植物学报 ›› 2020, Vol. 55 ›› Issue (3): 369-381.doi: 10.11983/CBB19150

• 专题论坛 • 上一篇    下一篇

植物激素研究中的化学生物学思路与应用

徐佳慧1,2,代宇佳2,3,罗晓峰2,3,舒凯2,*(),谭伟明1,*()   

  1. 1中国农业大学农学院, 北京 100193
    2西北工业大学生态环境学院, 西安 710012
    3四川农业大学生态农业研究所, 成都 611130
  • 收稿日期:2019-08-09 接受日期:2019-12-31 出版日期:2020-05-01 发布日期:2020-07-06
  • 通讯作者: 舒凯,谭伟明 E-mail:kshu@nwpu.edu.cn;tanwm@cau.edu.cn
  • 基金资助:
    国家重点研发计划(2017YFD0201300);国家自然科学基金(31872850)

Thoughts and Applications of Chemical Biology in Phytohormonal Research

Jiahui Xu1,2,Yujia Dai2,3,Xiaofeng Luo2,3,Kai Shu2,*(),Weiming Tan1,*()   

  1. 1College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2College of Ecological and Environmental, Northwestern Polytechnical University, Xi’an 710012, China
    3Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
  • Received:2019-08-09 Accepted:2019-12-31 Online:2020-05-01 Published:2020-07-06
  • Contact: Kai Shu,Weiming Tan E-mail:kshu@nwpu.edu.cn;tanwm@cau.edu.cn

摘要:

植物激素是植物生长发育过程中必不可少的重要调节物质, 它们直接或间接参与调控从种子萌发到成熟的各个发育阶段以及对生物/非生物胁迫的响应。随着利用小分子化合物探究生物体生理代谢分子机制的不断发展, 植物生物学与化学之间一个新的前沿交叉学科——化学生物学随之诞生, 并在短时间内取得了重要进展。化学生物学的思路与方法在植物激素研究领域中起到了不可替代的作用, 尤其是在激素合成及信号转导研究领域。该文概述了主要植物激素的小分子类似物及其在植物生长发育和生物/非生物胁迫响应等方面的作用机制, 并讨论了激素类似物在实际生产中的应用潜力及未来的研究方向。

关键词: 植物激素, 化学生物学, 激素类似物, 分子功能, 发育

Abstract:

Phytohormones are important regulatory substances for plant growth, directly or indirectly functioning in various developmental stages, from seed germination to maturity, as well as numerous biotic/abiotic stresses response. With the continuous improvement of small molecular compounds used to explore the molecular mechanisms of physiology and metabolism, chemical biology, a new frontier interdisciplinary discipline between plant biology and chemistry, was coined, and the important progresses have been achieved in a short time in the past several years. It has been revealed that the ideas and methods of chemical biology play an irreplaceable role in the research of plant hormones, especially in the area of plant signal transduction. This review summarizes the published small molecular analogs of major plant hormones, and outlines the mechanisms of how these small molecular analogs function in plant growth and development, and in response to biotic/abiotic stresses. Finally, the potential applications of these analogs in agricultural practice and future research directions were discussed.

Key words: phytohormones, chemical biology, hormone analogue, molecular function, development

表1

主要植物激素类似物的功能及应用"

植物激素 类似物名称 功能 应用 参考文献
ABA Pyrabactin 结合受体进行下游ABA信号转导, 显著抑制种子萌发, 响应干旱缺水胁迫 种子萌发抑制剂和
抗蒸腾剂
Ma et al., 2009; Park et al., 2009
AM1 参与调控ABA信号转导的基因表达, 响应干旱缺水胁迫及寒冷胁迫 高效结合受体的ABA激动剂 Cao et al., 2013; Okamoto et al., 2013
AMF 高亲和力结合受体, 维持ABA诱导的基因长时间高表达, 特别是抗旱基因 抗旱剂 Cao et al., 2017
Opabactin 高受体亲和力, 高ABA生物活性, 极显著抑制种子萌发, 具有抗旱活性及蒸腾效应, 激活ABA信号, 作用效果持久 抗蒸腾剂和ABA激动剂 Vaidya et al., 2019
GA AC-94377 结合激活GA信号, 抑制GA生物合成基因的表达, 参与调节GA应答基因的转录 GID1激动剂 Jiang et al., 2017a
67D及其衍生物 引发DELLA蛋白降解, 下调GA3ox1的表达水平, 具有与GA相同的信号通路 GID1激动剂 Jiang et al., 2017b
IAA 合成生长素类
除草剂
参与TIR/AFB泛素途径, 激活ABA和乙烯生物合成基因, 诱导氧化应激 除草剂 Grossmann, 2010; Busi et al., 2018
NBD-NAA/IAA 具有IAA转运特性, 模拟IAA运输并成像其运输位点, 可降低根系重力性 生长素运输模拟物 Hayashi et al., 2014
IAA-FITC/RITC 具有游离生长素生物活性和运输能力 游离生长素类似物 Soko?owska et al., 2014
RubNeddins 促进IAA共受体组装, 调控IAA信号, 调节根系生长发育 IAA激动剂 Vain et al., 2019
CTK 6-BA 促进细胞分裂, 加快果实生长, 促进芽的形成, 调控植物、微生物培养发酵 生物培养基的生长调节剂 Carimi et al., 2003; Zhang et al., 2016
TDZ 调控植物形态发生, 促进细胞分裂素合成, 调控植物激素信号转导, 促进应激基因表达, 增加应激信号分子 细胞分裂素类植物生长调节剂 Lu, 1993; Casanova et al., 2008
Ethylene 乙烯利 释放乙烯, 调控蜡质相关基因, 提高植物抗旱性, 促进乙烯受体基因的表达, 诱导果实脱落 催熟剂和生长延缓剂 Hagemann et al., 2015; Yu et al., 2017
1-甲基环丙烯 高亲和力结合受体, 抑制ACSACO基因表达, 降低相关酶活性, 抑制乙烯合成释放 乙烯受体抑制剂 Le Deunff and Lecourt, 2016
SL GR24 促进种子萌发, 抑制芽生长, 微克级诱导丛枝菌根真菌分枝, 调控生长素运输 SL生理功能模拟物 Zwanenburg et al., 2009; Bromhead et al., 2014
Sphynolactone-7 诱导Striga自杀式萌发, 激活高亲和力SL受体, 表现出纳米级SL效力 Striga自杀式萌发刺激剂 Uraguchi et al., 2018
JA 冠菌素 结合受体降解JAZ抑制因子, 促进逆境相关蛋白表达, 增加渗透调节物质, 提高植物抗逆性 茉莉酸类植物生长调节剂 Du et al., 2014; Zhou et al., 2015
[1] Abbas M, Alabadi D, Blázquez MA (2013). Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci 4, 441.
pmid: 24204373
[2] Armstrong F, Que L Jr (2012). Current opinion in chemical biology. Curr Opin Chem Biol 16, 1-2.
doi: 10.1016/j.cbpa.2012.03.011 pmid: 22481112
[3] Arndt FR, Rusch R, Stillfried HV, Hanisch B, Martin WC (1976). A new cotton defoliant. Plant Physiol 57, S-99.
doi: 10.1104/pp.57.6.862 pmid: 16659586
[4] Bender CL, Alarcón-Chaidez F, Gross DC (1999). Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol 63, 266-292.
[5] Benedetti CE, Arruda P (2002). Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. Plant Physiol 128, 1255-1263.
doi: 10.1104/pp.010813 pmid: 11950974
[6] Bleecker AB, Kende H (2000). Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev 16, 1-18.
[7] Boerjan W, Genetello C, Van Montagu M, Inzé D (1992). A new bioassay for auxins and cytokinins. Plant Physiol 99, 1090-1098.
doi: 10.1104/pp.99.3.1090 pmid: 16668975
[8] Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G (2007). Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12, 224-230.
doi: 10.1016/j.tplants.2007.03.009 pmid: 17416544
[9] Bromhead LJ, Visser J, McErlean CSP (2014). Enantioselective synthesis of the strigolactone mimic (+)-GR24. J Organ Chem 79, 1516-1520.
[10] Brooks DM, Bender CL, Kunkel BN (2005). The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 6, 629-639.
doi: 10.1111/j.1364-3703.2005.00311.x pmid: 20565685
[11] Busi R, Goggin DE, Heap IM, Horak MJ, Jugulam M, Masters RA, Napier RM, Riar DS, Satchivi NM, Torra J, Westra P, Wright TR (2018). Weed resistance to synthetic auxin herbicides. Pest Manag Sci 74, 2265-2276.
[12] Cao MJ, Liu X, Zhang Y, Xue XQ, Zhou XE, Melcher K, Gao P, Wang FX, Zeng L, Zhao Y, Zhao Y, Deng P, Zhong DF, Zhu JK, Xu HE, Xu Y (2013). An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Res 23, 1043-1054.
pmid: 23835477
[13] Cao MJ, Zhang YL, Liu X, Huang H, Zhou XE, Wang WL, Zeng A, Zhao CZ, Si T, Du JM, Wu WW, Wang FX, Xu HE, Zhu JK (2017). Combining chemical and genetic approaches to increase drought resistance in plants. Nat Com- mun 8, 1183.
[14] Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003). Cytokinins: new apoptotic inducers in plants. Plan- ta 216, 413-421.
[15] Casanova E, Moysset L, Trillas MI (2008). Effects of agar concentration and vessel closure on the organogenesis and hyperhydricity of adventitious carnation shoots. Biol Plantarum 52, 1-8.
[16] Chang IK, Foy CL (1983). Rapid growth responses of dwarf corn coleoptile sections to picloram. Pestic Biochem Physiol 19, 203-209.
[17] Cheng ZM, Jin R, Cao MJ, Liu XD, Chan ZL (2016). Exogenous application of ABA mimic 1 (AM1) improves cold stress tolerance in bermudagrass (Cynodon dactylon). Plant Cell Tissue Organ Cult 125, 231-240.
[18] Christoffoleti PJ, de Figueiredo MRA, Peres LEP, Nissen S, Gaines T (2015). Auxinic herbicides, mechanisms of action, and weed resistance: a look into recent plant science advances. Sci Agric 72, 356-362.
[19] Crawford S, Shinohara N, Sieberer T, Williamson L, George G, Hepworth J, Müller D, Domagalska MA, Leyser O (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137, 2905-2913.
pmid: 20667910
[20] Crosby KE, Aung LH, Buss GR (1981). Influence of 6- benzylaminopurine on fruit-set and seed development in two soybean, Glycine max (L.) Merr. genotypes. Plant Physiol 68, 985-988.
pmid: 16662076
[21] Dalal M, Inupakutika M (2014). Transcriptional regulation of ABA core signaling component genes in sorghum (Sorghum bicolor L. Moench). Mol Breed 34, 1517-1525.
[22] Dargeviciute A, Roux C, Decreux A, Sitbon F, Perrot-Rechenmann C (1998). Molecular cloning and expression of the early auxin-responsive Aux/IAA gene family in Nicotiana tabacum. Plant Cell Physiol 39, 993-1002.
doi: 10.1093/oxfordjournals.pcp.a029311 pmid: 9871362
[23] de Wild HPJ, Woltering EJ, Peppelenbos HW (1999). Carbon dioxide and 1-MCP inhibit ethylene production and respiration of pear fruit by different mechanisms. J Exp Bot 50, 837-844.
[24] Defilippi BG, Kader AA, Dandekar AM (2005). Apple aroma: alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci 168, 1199-1210.
[25] Dennis FG Jr (2000). The history of fruit thinning. Plant Growth Regul 31, 1-16.
[26] Dong L, Zhou HW, Sonego L, Lers A, Lurie S (2001). Ripening of 'Red Rosa' plums: effect of ethylene and 1-methylcyclopropene. Aust J Plant Physiol 28, 1039-1045.
[27] Du MW, Li Y, Tian XL, Duan LS, Zhang MC, Tan WM, Xu DY, Li ZH (2014). The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS One 9, e97652.
pmid: 24845465
[28] Elzinga D, Sternburg E, Sabbadin D, Bartsch M, Park SY, Vaidya A, Mosquna A, Kaundal A, Wendeborn S, Lachia M, Karginov FV, Cutler SR (2019). Defining and exploiting hypersensitivity hotspots to facilitate abscisic acid agonist optimization. ACS Chem Biol 14, 332-336.
doi: 10.1021/acschembio.8b00955 pmid: 30668093
[29] Fan WQ, Li J, Jia J, Wang F, Cao CL, Hu JJ, Mu ZX (2015). Pyrabactin regulates root hydraulic properties in maize seedlings by affecting PIP aquaporins in a phosphorylation-dependent manner. Plant Physiol Biochem 94, 28-34.
doi: 10.1016/j.plaphy.2015.05.005 pmid: 26000467
[30] Feys BJF, Benedetti CE, Penfold CN, Turner JG (1994). Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751-759.
doi: 10.1105/tpc.6.5.751 pmid: 12244256
[31] Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009). (+)-7-iso-jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5, 344-350.
doi: 10.1038/nchembio.161 pmid: 19349968
[32] Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48, 909-930.
doi: 10.1016/j.plaphy.2010.08.016 pmid: 20870416
[33] Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015). Applications of fluorine in medicinal chemistry. J Med Chem 58, 8315-8359.
doi: 10.1021/acs.jmedchem.5b00258 pmid: 26200936
[34] Grossmann K (2007). Auxin herbicide action: lifting the veil step by step. Plant Signal Behav 2, 421-423.
doi: 10.4161/psb.2.5.4417 pmid: 19704620
[35] Grossmann K (2010). Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66, 113-120.
pmid: 19823992
[36] Grossmann K, Scheltrup F, Kwiatkowski J, Caspar G (1996). Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants. J Plant Physiol 149, 475-478.
doi: 10.1016/S0176-1617(96)80153-2
[37] Hagemann MH, Winterhagen P, Hegele M, Wünsche JN (2015). Ethephon induced abscission in mango: physiological fruitlet responses. Front Plant Sci 6, 706.
doi: 10.3389/fpls.2015.00706 pmid: 26442021
[38] Hare PD, van Staden J (1994). Inhibitory effect of thidiazuron on the activity of cytokinin oxidase isolated from soybean callus. Plant Cell Physiol 35, 1121-1125.
[39] Hartung W, Sauter A, Hose E (2002). Abscisic acid in the xylem: where does it come from, where does it go to? J Exp Bot 53, 27-32.
pmid: 11741037
[40] Hauser F, Waadt R, Schroeder JI (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21, R346-R355.
doi: 10.1016/j.cub.2011.03.015 pmid: 21549957
[41] Hayashi KI, Nakamura S, Fukunaga S, Nishimura T, Jenness MK, Murphy AS, Motose H, Nozaki H, Furutani M, Aoyama T (2014). Auxin transport sites are visualized in planta using fluorescent auxin analogs. Proc Natl Acad Sci USA 111, 11557-11562.
doi: 10.1073/pnas.1408960111 pmid: 25049419
[42] Hershkovitz V, Saguy SI, Pesis E (2005). Postharvest application of 1-MCP to improve the quality of various avocado cultivars. Postharvest Biol Technol 37, 252-264.
[43] Hicks GR, Raikhel NV (2009). Opportunities and challenges in plant chemical biology. Nat Chem Biol 5, 268-272.
doi: 10.1038/nchembio0509-268 pmid: 19377447
[44] Hua ZH, Vierstra RD (2011). The cullin-RING ubiquitinprotein ligases. Annu Rev Plant Biol 62, 299-334.
pmid: 21370976
[45] Hutchinson MJ, Murr D, Krishnaraj S, Senaratna T, Saxena PK (1997). Does ethylene play a role in thidia- zuron-regulated somatic embryogenesis of geranium (Pelargonium × hortorum Bailey) hypocotyl cultures? In Vitro Cell Dev Biol Plant 33, 136-141.
[46] Ish-Shalom M, Dahan Y, Maayan I, Irihimovitch V (2011). Cloning and molecular characterization of an ethylene receptor gene, MiERS1, expressed during mango fruitlet abscission and fruit ripening. Plant Physiol Biochem 49, 931-936.
pmid: 21676621
[47] Jiang K, Otani M, Shimotakahara H, Yoon JM, Park SH, Miyaji T, Nakano T, Nakamura H, Nakajima M, Asami T (2017a). Substituted phthalimide AC94377 is a selective agonist of the gibberellin receptor GID1. Plant Physiol 173, 825-835.
doi: 10.1104/pp.16.00937 pmid: 27899534
[48] Jiang K, Shimotakahara H, Luo M, Otani M, Nakamura H, Moselhy SS, Abualnaja KO, Al-Malki AL, Kumosani TA, Kitahata N, Nakano T, Nakajima M, Asami T (2017b). Chemical screening and development of novel gibberellin mimics. Bioorg Med Chem Lett 27, 3678-3682.
doi: 10.1016/j.bmcl.2017.07.012 pmid: 28716493
[49] John-Karuppiah KJ, Burns JK (2010). Expression of ethylene biosynthesis and signaling genes during differential abscission responses of sweet orange leaves and mature fruit. J Am Soc Hortic Sci 135, 456-464.
[50] Jones MPA, Yi ZJ, Murch SJ, Saxena PK (2007). Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep 26, 13-19.
doi: 10.1007/s00299-006-0209-3 pmid: 16897009
[51] Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008). COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci USA 105, 7100-7105.
doi: 10.1073/pnas.0802332105 pmid: 18458331
[52] Kenyon JS, Turner JG (1992). The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine. Plant Physiol 100, 219-224.
pmid: 16652950
[53] Kim TH, Böhmer M, Hu HH, Nishimura N, Schroeder JI (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling . Annu Rev Plant Biol 61, 561-591.
pmid: 20192751
[54] Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN (2001). Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive ( coi1) mutation occurs through two distinct mechanisms. Plant J 26, 509-522.
doi: 10.1046/j.1365-313x.2001.01050.x pmid: 11439137
[55] Ladbury JE, Klebe G, Freire E (2010). Adding calorimetric data to decision making in lead discovery: a hot tip. Nat Rev Drug Discov 9, 23-27.
doi: 10.1038/nrd3054 pmid: 19960014
[56] Lauchli R, Boland W (2003). Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism. Chem Rec 3, 12-21.
doi: 10.1002/tcr.10043 pmid: 12552527
[57] Le Deunff E, Lecourt J (2016). Non-specificity of ethylene inhibitors: ‘double-edged’ tools to find out new targets involved in the root morphogenetic programme. Plant Biol 18, 353-361.
doi: 10.1111/plb.12405 pmid: 26434926
[58] Lee SB, Suh MC (2015). Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep 34, 557-572.
doi: 10.1007/s00299-015-1772-2 pmid: 25693495
[59] Li DL, Du SQ, Tan WM, Duan HX (2015). Computational insight into the structure-activity relationship of novel N-substituted phthalimides with gibberellin-like activity. J Mol Model 21, 271.
doi: 10.1007/s00894-015-2817-8 pmid: 26412055
[60] Liu RL, Lai TF, Xu Y, Tian SP (2013). Changes in physiology and quality of Laiyang pear in long time storage. Sci Hortic 150, 31-36.
[61] Lu CY (1993). The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol Plant 29, 92-96.
[62] Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
doi: 10.1126/science.1172408 pmid: 19407143
[63] Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, Suino-Powell KM, Park SY, Weiner JJ, Fujii H, Chinnusamy V, Kovach A, Li J, Wang YH, Li JY, Peterson FC, Jensen DR, Yong EL, Volkman BF, Cutler SR, Zhu JK, Xu HE (2009). A gate-latch-lock mechanism for hormone signaling by abscisic acid receptors. Nature 462, 602-608.
doi: 10.1038/nature08613 pmid: 19898420
[64] Mergner J, Schwechheimer C (2014). The NEDD8 modification pathway in plants. Front Plant Sci 5, 103.
doi: 10.3389/fpls.2014.00103 pmid: 24711811
[65] Metzger JD (1983). Promotion of germination of dormant weed seeds by substituted phthalimides and gibberellic acid. Weed Sci 31, 285-289.
[66] Murthy BNS, Murch SJ, Saxena PK (1998). Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34, 267-275.
[67] Naeem MS, Dai LL, Ahmad F, Ahmad A, Li J, Zhang CL (2016). AM1 is a potential ABA substitute for drought tolerance as revealed by physiological and ultra-structural responses of oilseed rape. Acta Physiol Plant 38, 183.
[68] Nishimura N, Sarkeshik A, Nito K, Park SY, Wang A, Carvalho PC, Lee S, Caddell DF, Cutler SR, Chory J, Yates JR, Schroeder JI (2010). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C- interacting proteins in Arabidopsis. Plant J 61, 290-299.
doi: 10.1111/j.1365-313X.2009.04054.x pmid: 19874541
[69] Nutman PS, Thornton HG, Quastel JH (1945). Plant- growth substances as selective weed-killers: inhibition of plant growth by 2,4-dichlorophenoxyacetic acid and other plant-growth substances. Nature 155, 498-500.
[70] Okamoto M, Peterson FC, Defries A, Park SY, Endo A, Nambara E, Volkman BF, Cutler SR (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA- regulated gene expression, and drought tolerance. Proc Natl Acad Sci USA 110, 12132-12137.
doi: 10.1073/pnas.1305919110 pmid: 23818638
[71] Ottenschläger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003). Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100, 2987-2991.
doi: 10.1073/pnas.0437936100 pmid: 12594336
[72] Pan BZ, Xu ZF (2011). Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30, 166-174.
doi: 10.1007/s00344-010-9179-3
[73] Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009). Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA-binding START proteins. Science 324, 1068-1071.
doi: 10.1126/science.1173041 pmid: 19407142
[74] Parmar P, Kumari N, Sharma V (2013). Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. Bot Stud 54, 45.
pmid: 28510881
[75] Pathak N, Asif MH, Dhawan P, Srivastava MK, Nath P (2003). Expression and activities of ethylene biosynthesis enzymes during ripening of banana fruits and effect of 1-MCP treatment. Plant Growth Regul 40, 11-19.
[76] Peterson FC, Burgie ES, Park SY, Jensen DR, Weiner JJ, Bingman CA, Chang CEA, Cutler SR, Phillips GN Jr, Volkman BF (2010). Structural basis for selective activation of ABA receptors. Nat Struct Mol Biol 17, 1109-1113.
doi: 10.1038/nsmb.1898 pmid: 20729860
[77] Polanco MC, Peláez MI, Ruiz ML (1988). Factors affecting callus and shoot formation from in vitro cultures of Lens culinaris Medik. Plant Cell Tissue Organ Cult 15, 175-182.
[78] Pufky J, Qiu Y, Rao MV, Hurban P, Jones AM (2003). The auxin-induced transcriptome for etiolated Arabidopsis seed-lings using a structure/function approach. Funct Integr Genomics 3, 135-143.
doi: 10.1007/s10142-003-0093-7 pmid: 14648238
[79] Puli MR, Raghavendra AS (2012). Pyrabactin, an ABA agonist, induced stomatal closure and changes in signaling components of guard cells in abaxial epidermis of Pisum sativum. J Exp Bot 63, 1349-1356.
doi: 10.1093/jxb/err364
[80] Quareshy M, Prusinska J, Li J, Napier R (2018). A cheminformatics review of auxins as herbicides. J Exp Bot 69, 265-275.
doi: 10.1093/jxb/erx258 pmid: 28992122
[81] Raghukumar S (2008). Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10, 631-640.
doi: 10.1007/s10126-008-9135-4 pmid: 18712565
[82] Rodaway SJ, Gates DW, Brindle C (1991). Control of early seedling growth in varietal lines of hexaploid wheat (Triticum aestivum), durum wheat (Triticum durum), and barley (Hordeum vulgare) in response to the phthalimide growth regulant, AC94377. Plant Growth Regul 10, 243-259.
[83] Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeijl A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones? Plant Physiol 155, 721-734.
doi: 10.1104/pp.110.166645 pmid: 21119044
[84] Schmitzer PR, Balko TW, Daeuble JF, Epp JB, Satchivi NM, Siddall TL, Weimer MR, Yerkes CN (2015). Discovery and SAR of halauxifen methyl: a novel auxin herbicide. In: Maienfisch P, Stevenson TM, eds. Discovery and Synthesis of Crop Protection Products. Washington: ACS. pp. 247-260.
[85] Serek M, Sisler EC, Reid MS (1994). Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants. J Am Soc Hortic Sci 119, 1230-1233.
[86] Sheard LB, Tan X, Mao HB, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010). Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400-405.
doi: 10.1038/nature09430 pmid: 20927106
[87] Sisler EC, Serek M (1997). Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100, 577-582.
[88] Sisler EC, Serek M, Dupille E (1996). Comparison of cyclopropene, 1-methylcyclopropene, and 3,3-dimethylcyclopropene as ethylene antagonists in plants. Plant Growth Regul 18, 169-174.
[89] Sokołowska K, Kizińska J, Szewczuk Z, Banasiak A (2014). Auxin conjugated to fluorescent dyes—a tool for the analysis of auxin transport pathways. Plant Biol 16, 866-877.
doi: 10.1111/plb.12144 pmid: 24397706
[90] Soon FF, Ng LM, Zhou XE, West GM, Kovach A, Tan MHE, Suino-Powell KM, He YZ, Xu Y, Chalmers MJ, Brunzelle JS, Zhang HM, Yang HY, Jiang HL, Li J, Yong EL, Cutler S, Zhu JK, Griffin PR, Melcher K, Xu HE (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335, 85-88.
doi: 10.1126/science.1215106 pmid: 22116026
[91] Suttle JC, Hultstrand JF (1987). Physiological studies of a synthetic gibberellin-like bioregulator II. Effect of site of application on biological activity. Plant Physiol 84, 1068-1073.
doi: 10.1104/pp.84.4.1068 pmid: 16665563
[92] Toh S, Holbrook-Smith D, Stogios PJ, Onopriyenko O, Lumba S, Tsuchiya Y, Savchenko A, McCourt P (2015). Structure-function analysis identifies highly sensitive strigolactone receptors in Striga. Science 350, 203-207.
doi: 10.1126/science.aac9476 pmid: 26450211
[93] Uppalapati SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL (2005). The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J 42, 201-217.
doi: 10.1111/j.1365-313X.2005.02366.x pmid: 15807783
[94] Uraguchi D, Kuwata K, Hijikata Y, Yamaguchi R, Imaizumi H, Am S, Rakers C, Mori N, Akiyama K, Irle S, McCourt P, Kinoshita T, Ooi T, Tsuchiya Y (2018). A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica. Science 362, 1301-1305.
doi: 10.1126/science.aau5445 pmid: 30545887
[95] Vaidya AS, Helander JDM, Peterson FC, Elzinga D, Dejonghe W, Kaundal A, Park SY, Xing ZN, Mega R, Takeuchi J, Khanderahoo B, Bishay S, Volkman BF, Todoroki Y, Okamoto M, Cutler SR (2019). Dynamic control of plant water use using designed ABA receptor agonists. Science 366, eaaw8848.
doi: 10.1126/science.aaz9758 pmid: 31857470
[96] Vaidya AS, Peterson FC, Yarmolinsky D, Merilo E, Verstraeten I, Park SY, Elzinga D, Kaundal A, Helander J, Lozano-Juste J, Otani M, Wu K, Jensen DR, Kollist H, Volkman BF, Cutler SR (2017). A rationally designed agonist defines subfamily IIIA abscisic acid receptors as critical targets for manipulating transpiration. Acs Chem Biol 12, 2842-2848.
doi: 10.1021/acschembio.7b00650 pmid: 28949512
[97] Vain T, Raggi S, Ferro N, Barange DK, Kieffer M, Ma Q, Doyle SM, Thelander M, Pařízková B, Novák O, Ismail A, Enquist PA, Rigal A, Łangowska M, Ramans Harborough S, Zhang Y, Ljung K, Callis J, Almqvist F, Kepinski S, Estelle M, Pauwels L, Robert S (2019). Selective auxin agonists induce specific AUX/IAA protein degradation to modulate plant development. Proc Natl Acad Sci USA 116, 6463-6472.
doi: 10.1073/pnas.1809037116 pmid: 30850516
[98] Wang SY, Jiao HJ, Faust M (1991a). Changes in metabolic enzyme activities during thidiazuron-induced lateral budbreak of apple. HortScience 26, 171-173.
[99] Wang SY, Jiao HJ, Faust M (1991b). Changes in the activities of catalase, peroxidase, and polyphenol oxidase in apple buds during bud break induced by thidiazuron. J Plant Growth Regul 10, 33-39.
[100] Wang SY, Steffens GL, Faust M (1986). Breaking bud dormancy in apple with a plant bioregulator, thidiazuron. Phytochemistry 25, 311-317.
doi: 10.1016/S0031-9422(00)85472-2
[101] Wang XH, Yin W, Wu JX, Chai LJ, Yi HL (2016). Effects of exogenous abscisic acid on the expression of citrus fruit ripening-related genes and fruit ripening. Sci Hortic 201, 175-183.
[102] Watkins CB, Nock JF (2012). Rapid 1-methylcyclopropene (1-MCP) treatment and delayed controlled atmosphere storage of apples. Postharvest Biol Technol 69, 24-31.
[103] Weijers D, Wagner D (2016). Transcriptional responses to the auxin hormone. Annu Rev Plant Biol 67, 539-574.
doi: 10.1146/annurev-arplant-043015-112122 pmid: 26905654
[104] Wigchert SCM, Kuiper E, Boelhouwer GJ, Nefkens GHL, Verkleij JAC, Zwanenburg B (1999). Dose-response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR24 and Nijmegen 1. J Agric Food Chem 47, 1705-1710.
[105] Wismer PT, Proctor JTA, Elfving DC (1995). Benzyladenine affects cell division and cell size during apple fruit thinning. J Am Soc Hortic Sci 120, 802-807.
[106] Wolters H, Jürgens G (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10, 305-317.
[107] Wu MF, Yamaguchi N, Xiao J, Bargmann B, Estelle M, Sang Y, Wagner D (2015). Auxin-regulated chromatin switch directs acquisition of flower primordium founder fate. eLife 4, e09269.
doi: 10.7554/eLife.09269 pmid: 26460543
[108] Xie ZX, Duan LS, Tian XL, Wang BM, Eneji AE, Li ZH (2008). Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. J Plant Physiol 165, 375-384.
doi: 10.1016/j.jplph.2007.06.001 pmid: 17686549
[109] Xiong JL, Dai LL, Ma N, Zhang CL (2018). Transcriptome and physiological analyses reveal that AM1 as an ABA- mimicking ligand improves drought resistance in Brassica napus. Plant Growth Regul 85, 73-90.
[110] Yang WQ, Zhang W, Wang XX (2017). Post-translational control of ABA signaling: the roles of protein phosphorylation and ubiquitination. Plant Biotechnol J 15, 4-14.
doi: 10.1111/pbi.12652 pmid: 27767245
[111] Yang XT, Song J, Campbell-Palmer L, Fillmore S, Zhang ZQ (2013). Effect of ethylene and 1-MCP on expression of genes involved in ethylene biosynthesis and perception during ripening of apple fruit. Postharvest Biol Technol 78, 55-66.
[112] Yao RF, Wang F, Ming ZH, Du XX, Chen L, Wang YP, Zhang WH, Deng HT, Xie DX (2017). ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds. Cell Res 27, 838-841.
pmid: 28059066
[113] Yoneyama K, Xie XN, Kim HI, Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta 235, 1197-1207.
doi: 10.1007/s00425-011-1568-8 pmid: 22183123
[114] Yoneyama K, Xie XN, Kusumoto D, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007). Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227, 125-132.
doi: 10.1007/s00425-007-0600-5 pmid: 17684758
[115] Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K, Yamaguchi-Shinozaki K (2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signaling in response to osmotic stress. Plant Cell Environ 38, 35-49.
doi: 10.1111/pce.12351 pmid: 24738645
[116] Young SA, Park SK, Rodgers C, Mitchell RE, Bender CL (1992). Physical and functional characterization of the gene cluster encoding the polyketide phytotoxin coronatine in Pseudomonas syringae pv. glycinea. J Bacteriol 174, 1837-1843.
doi: 10.1128/jb.174.6.1837-1843.1992 pmid: 1548231
[117] Yu HY, Zhang YS, Xie Y, Wang YB, Duan LS, Zhang MC, Li ZH (2017). Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. J Plant Physiol 214, 123-133.
doi: 10.1016/j.jplph.2017.04.008 pmid: 28482333
[118] Yu XJ, Sun J, Zheng JY, Sun YQ, Wang Z (2016). Metabolomics analysis reveals 6-benzylaminopurine as a stimulator for improving lipid and DHA accumulation of Aurantiochytrium sp. J Chem Technol Biol 91, 1199-1207.
[119] Zhang CR, Huang XL, Wu JY, Feng BH, Chen YF (2006). Identification of thidiazuron-induced ESTs expressed differentially during callus differentiation of alfalfa (Medicago sativa). Physiol Plant 128, 732-739.
[120] Zhang W, He LS, Zhang R, Guo SQ, Yue HF, Ning XX, Tan GY, Li QX, Wang BM (2016). Development of a monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of 6-benzylaminopurine and its ribose adduct in bean sprouts. Food Chem 207, 233-238.
doi: 10.1016/j.foodchem.2016.03.103 pmid: 27080901
[121] Zhao Y, Chow TF, Puckrin RS, Alfred SE, Korir AK, Larive CK, Cutler SR (2007). Chemical genetic interrogation of natural variation uncovers a molecule that is glycoactivated. Nat Chem Biol 3, 716-721.
[122] Zhou YY, Zhang MC, Li JM, Li ZH, Tian XL, Duan LS (2015). Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on electrophoresis and TOF-MS analysis. Sci Rep 5, 13870.
doi: 10.1038/srep13870 pmid: 26347991
[123] Zwanenburg B, Mwakaboko AS, Reizelman A, Anilkumar G, Sethumadhavan D (2009). Structure and function of natural and synthetic signaling molecules in parasitic weed germination. Pest Manag Sci 65, 478-491.
doi: 10.1002/ps.1706 pmid: 19222046
[124] Zwanenburg B, Pospíšil T (2013). Structure and activity of strigolactones: new plant hormones with a rich future. Mol Plant 6, 38-62.
doi: 10.1093/mp/sss141
[1] 谢道昕. 独脚金内酯信号途径的新发现——抑制子也是转录因子[J]. 植物学报, 2020, 55(4): 0-0.
[2] 黄久香 陈文娜 李玉玲 姚纲. 基于多个叶绿体基因序列片段的广义苋科系统发育关系研究[J]. 植物学报, 2020, 55(4): 0-0.
[3] 王劲东,周豫,余佳雯,范晓磊,张昌泉,李钱峰,刘巧泉. miR172-AP2模块调控植物生长发育及逆境响应的研究进展[J]. 植物学报, 2020, 55(2): 205-215.
[4] 肖燕,王振兴,李东明,齐艳华,恩和巴雅尔. 羊草成熟胚诱导愈伤组织及植株再生系统的优化[J]. 植物学报, 2020, 55(2): 192-198.
[5] 王伟,刘阳. 植物生命之树重建的现状、问题和对策建议[J]. 生物多样性, 2020, 28(2): 176-188.
[6] 顾钰峰,金冬梅,刘保东,戴锡玲,严岳鸿. 蕨类植物的鳞片特征及演化I: 凤尾蕨科[J]. 植物学报, 2020, 55(2): 163-176.
[7] 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105.
[8] 唐丽丽,张梅,赵香林,康慕谊,刘鸿雁,高贤明,杨彤,郑璞帆,石福臣. 华北地区胡桃楸林分布规律及群落构建机制分析[J]. 植物生态学报, 2019, 43(9): 753-761.
[9] 柴永福,许金石,刘鸿雁,刘全儒,郑成洋,康慕谊,梁存柱,王仁卿,高贤明,张峰,福臣,刘晓,岳明. 华北地区主要灌丛群落物种组成及系统发育结构特征[J]. 植物生态学报, 2019, 43(9): 793-805.
[10] 曹槟, 李国杰, 赵瑞琳. 大小兴安岭地区红菇属物种多样性及其地理成分[J]. 生物多样性, 2019, 27(8): 854-866.
[11] 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性[J]. 植物生态学报, 2019, 43(6): 543-556.
[12] 郭倩倩, 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673.
[13] 张洵, 喻娟娟, 王思竹, 李莹, 戴绍军. 植物DREPP基因家族研究进展[J]. 植物学报, 2019, 54(5): 582-595.
[14] 赵月梅, 杨振艳, 赵永平, 李筱玲, 赵志新, 赵桂仿. 木犀科植物叶绿体基因组结构特征和系统发育关系[J]. 植物学报, 2019, 54(4): 441-454.
[15] 范业赓, 丘立杭, 黄杏, 周慧文, 甘崇琨, 李杨瑞, 杨荣仲, 吴建明, 陈荣发. 甘蔗节间伸长过程赤霉素生物合成关键基因的表达及相关植物激素动态变化[J]. 植物学报, 2019, 54(4): 486-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关萍 石建明 李淑久. 绞股兰下胚轴愈伤组织发生与器官再生的组织学观察[J]. 植物学报, 1994, 11(专辑): 19 .
[2] 肖啸 程振起. 叶绿体4.5 SrRNA II. 基因与起源[J]. 植物学报, 1985, 3(06): 7 -9 .
[3] 曹翠玲李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J]. 植物学报, 2003, 20(03): 319 -324 .
[4] 宋莉英 谭诤 高峰 邓暑燕. 我国葫芦科植物离体培养研究进展[J]. 植物学报, 2004, 21(03): 360 -366 .
[5] 柯曼琴 张慧 秦月秋. PP333对曲阜香稻茎秆解剖结构的影响初报[J]. 植物学报, 1994, 11(专辑): 76 .
[6] 李俊德 杨健 王宇飞. 山东山旺中新世的水生植物[J]. 植物学报, 2000, 17(专辑): 261 .
[7] 徐景先 王宇飞 杨健 普光荣 张翠芬. 云南第三纪植物群及其古气候的研究进展[J]. 植物学报, 2000, 17(专辑): 84 -94 .
[8] 孙震晓 夏光敏 陈惠民. 新麦草的核型分析[J]. 植物学报, 1995, 12(01): 56 .
[9] 王立军 谷安根 张友民 贾伟平. 南瓜幼苗初生维管系统的解剖学研究[J]. 植物学报, 1994, 11(专辑): 8 -9 .
[10] 郑云普;赵建成*;张丙昌;李琳;张元明. 荒漠生物结皮中藻类和苔藓植物研究进展[J]. 植物学报, 2009, 44(03): 371 -378 .