植物学报 ›› 2019, Vol. 54 ›› Issue (2): 227-236.doi: 10.11983/CBB18142

• 研究报告 • 上一篇    下一篇

钼在桃树干旱胁迫响应中的作用解析

郜怀峰,张亚飞,王国栋,孙希武,贺月,彭福田(),肖元松()   

  1. 山东农业大学园艺科学与工程学院, 作物生物学国家重点实验室, 泰安 271018
  • 收稿日期:2018-06-19 接受日期:2018-11-16 出版日期:2019-03-01 发布日期:2019-09-01
  • 通讯作者: 彭福田,肖元松 E-mail:pft@sdau.edu.cn;ysxiao@sdau.edu.cn
  • 基金资助:
    国家现代农业产业技术体系建设专项资金(CARS-30-2-02);山东省自然科学基金(ZR2017BC017);山东省“双一流”建设奖补资金(SYL2017YSTD10)

The Effect of Molybdenum on Drought Stress Response in Peach

Gao Huaifeng,Zhang Yafei,Wang Guodong,Sun Xiwu,He Yue,Peng Futian(),Xiao Yuansong()   

  1. State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
  • Received:2018-06-19 Accepted:2018-11-16 Online:2019-03-01 Published:2019-09-01
  • Contact: Peng Futian,Xiao Yuansong E-mail:pft@sdau.edu.cn;ysxiao@sdau.edu.cn

摘要:

以毛桃(Amygdalus persica)实生苗为试材, 研究干旱胁迫下, 钼酸铵处理对钼辅因子硫化酶编码基因(LOS5/ABA3)表达量、脱落酸(ABA)含量及抗旱相关生理指标的影响。结果表明, 干旱胁迫下, 喷施不同浓度钼酸铵处理毛桃实生苗叶片, 其含水量及叶绿素和脯氨酸含量显著高于对照, 且以0.04%钼酸铵处理效果最好; 电解质渗漏率显著低于对照。干旱胁迫下, 与对照相比, 喷施0.04%钼酸铵的毛桃实生苗叶片中LOS5/ABA3表达量显著提高; ABA含量、水分利用效率和净光合速率均高于对照, 蒸腾速率低于对照, 且差异显著; 叶片抗氧化酶活性显著升高, MDA含量显著降低; 离体处理的叶片质量损失减缓, 且差异显著。研究表明毛桃实生苗在干旱胁迫下喷施钼酸铵可通过上调钼辅因子硫化酶编码基因的表达水平, 提高叶片中ABA和脯氨酸含量及抗氧化酶活性, 从而缓解干旱胁迫下的细胞膜氧化伤害, 降低叶片失水速率, 减轻干旱胁迫对毛桃实生苗的伤害。

关键词: 桃实生苗, 钼酸铵, 干旱胁迫, LOS5/ABA3, 抗旱性

Abstract:

Peach (Amygdalus persica) seedlings were used to analyze the effect of ammonium molybdate on the expression of molybdenum cofactor sulfurase gene (LOS5/ABA3), ABA content and physiological indexes related to drought resistance under drought stress. Water, chlorophyll and proline contents of peach seedling leaves were significantly higher with ammonium molybdate, preferably 0.04%, than control treatment, and electrolyte leakage was lower. Under drought stress, the expression of LOS5/ABA3 in leaves treated with 0.04% ammonium molybdate was significantly increased and ABA content, water use efficiency, and net photosynthetic rate was higher than with control treatment. Transpiration rate was lower, antioxidant enzyme activity was higher, and malondialdehyde content was lower in leaves; the quality loss of leaves in vitro was reduced. Thus, ammonium molybdate treatment of peach seedlings can increase the content of ABA and proline, increase the activity of antioxidant enzymes, relieve cell membrane oxidation damage, decrease the rate of water loss of leaves, and alleviate drought stress damage by regulating the expression of drought- resistant genes, then increase the drought resistance of plants.

Key words: peach seedlings, ammonium molybdate, drought stress, LOS5/ABA3, drought resistance

表1

本研究所用引物"

Primer name Primer (5′→3′)
PpABA3-F CAATGGTACTGCAGCATCTATGA
PpABA3-R TAAGTTATATGCCTCTCCTGTTGG
PpACTIN-F TGCATTGTGTATGTGTTCATCTACA
PpACTIN-R CTTCACCATTCCAGTTCCATTGTC

图1

干旱胁迫下不同浓度钼酸铵处理的毛桃实生苗叶片含水量(A)及电解质渗漏率(B)不同小写字母表示处理间差异达0.05显著水平。"

图2

干旱胁迫下不同浓度钼酸铵处理的毛桃实生苗叶片叶绿素(A)及脯氨酸含量(B) 不同小写字母表示处理间差异达0.05显著水平。"

图3

干旱胁迫下钼酸铵处理的毛桃实生苗叶片SPAD值(A)、净光合速率(B)、蒸腾速率(C)和水分利用效率(D) 不同小写字母表示处理间差异达0.05显著水平。"

图4

毛桃叶片离体后质量百分比的变化CK: 正常条件+清水; T1: 正常条件+0.04%钼酸铵; T2: 中度干旱胁迫+清水; T3: 中度干旱胁迫+0.04%钼酸铵; T4: 重度干旱胁迫+清水; T5: 重度干旱胁迫+0.04%钼酸铵。不同小写字母表示处理间差异达0.05显著水平。"

图5

钼酸铵对毛桃叶片丙二醛(A)含量及过氧化氢酶(B)、过氧化物酶(C)和超氧化物歧化酶(D)活性的影响MDA: 丙二醛; CAT: 过氧化氢酶; POD: 过氧化物酶; SOD: 超氧化物歧化酶。不同小写字母表示处理间差异达0.05显著水平。"

图6

不同干旱胁迫下钼酸铵处理的毛桃实生苗叶片ABA含量 不同小写字母表示各处理间差异达0.05显著水平。"

图7

不同干旱胁迫下的毛桃实生苗叶片LOS5/ABA3的表达量(A) 正常条件; (B) 中度干旱胁迫; (C) 重度干旱胁迫。不同小写字母表示各处理间差异达0.05显著水平"

[1] 李洁, 列志旸, 薛立, 黄威龙, 许建新 ( 2016). 干旱胁迫对3种园林绿化树种幼苗生理指标的影响. 西南林业大学学报 36(2), 56-61.
[2] 邵惠芳, 陈征, 许嘉阳, 范艺宽, 黄五星, 张海枞, 许自成 ( 2016). 两种烟草幼苗叶片对不同强度干旱胁迫的生理响应比较. 植物生理学报 52, 1861-1871.
[3] 宋哲, 章家长, 楮庆全, 李召虎 ( 2008). 转LOS5/ABA3基因早熟禾(P. pratensis L.)的获得及抗旱和抗寒性分析. 中国科技论文在线. .
[4] 苏金, 朱汝财 ( 2001). 渗透胁迫调节的转基因表达对植物抗旱耐盐性的影响. 植物学通报 18, 129-136.
[5] 孙学成 ( 2006). 钼提高冬小麦抗寒力的生理基础及分子机制. 博士论文. 武汉: 华中农业大学.
[6] 王华, 王飞, 陈登文, 丁勤 ( 2000). 低温胁迫对杏花SOD活性和膜脂过氧化的影响. 果树科学 17, 197-201.
[7] 王尉, 乐胜峰, 贺天雨, 杜宁, 林楠 ( 2018). 高效液相色谱法测定苜蓿中脱落酸的含量. 分析仪器 53(2), 53-57.
[8] 吴明才, 肖昌珍 ( 1994). 大豆钼素研究. 大豆科学 13, 245-251.
[9] 武松伟, 胡承孝, 谭启玲, 孙学成 ( 2016). 钼与植物抗寒性研究进展. 湖北农业科学 55, 13-16, 42.
[10] 张士功, 刘国栋, 刘更另 ( 2001). 植物营养与作物抗旱性. 植物学通报 18, 64-69, 63.
[11] 张志良, 瞿伟菁, 李小方 ( 2009). 植物生理学实验指导(第4版). 北京: 高等教育出版社. pp. 4-5.
[12] 赵世杰, 史国安, 董新纯 ( 2002). 植物生理学实验指导. 北京: 中国农业科学技术出版社. pp. 164-165.
[13] Atwal PS, Scaglia F ( 2016). Molybdenum cofactor deficiency. Mol Genet Metab 117, 1-4.
doi: 10.1016/j.ymgme.2015.11.010
[14] Barker R, Dawe D, Tuong TP, Bhuiyan SI, Guerra LC ( 1998). The outlook for water resources in the Year 2020: challenges for research on water management in rice production. International Rice Commission Newsletter 49, 7-21.
[15] Garbero M, Pedranzani H, Zirulnik F, Molina A, Pérez- Chaca MV, Vigliocco A, Abdala G ( 2011). Short-term cold stress in two cultivars of Digitaria eriantha : effects on stress-related hormones and antioxidant defense system. Acta Physiol Plant 33, 497-507.
[16] Hanks RJ ( 1983). Yield and water-use relationships: an overview. In: Taylor HM, Jordan WR, Sinclair TR, eds. Limitations to Efficient Water Use in Crop Production. Ma- dison: American Society of Agronomy. pp. 393-411.
[17] Hille R, Hall J, Basu P ( 2014). The mononuclear molybdenum enzymes. Chem Rev 114, 3963-4038.
doi: 10.1021/cr400443z
[18] Li YJ, Zhang JC, Zhang J, Hao L, Hua JP, Duan LS, Zhang MC, Li ZH ( 2013). Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions. Plant Biotechnol J 11, 747-758.
doi: 10.1111/pbi.12066
[19] Lu Y, Li YJ, Zhang JC, Xiao YT, Yue YS, Duan LS, Zhang MC, Li ZH ( 2013). Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize ( Zea mays L.). PLoS One 8, e52126.
[20] Ma FF, Lu R, Liu HY, Shi B, Zhang JH, Tan MP, Zhang AY, Jiang MY ( 2012). Nitric oxide-activated calcium/calmo- dulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63, 4835-4847.
doi: 10.1093/jxb/ers161
[21] Mahajan S, Tuteja N ( 2005). Cold, salinity and drought stres- ses: an overview. Arch Biochem Biophys 444, 139-158.
doi: 10.1016/j.abb.2005.10.018
[22] Patnaitk D, Khurana P ( 2002). Wheat biotechnology: a minireview. Electron J Biotechnol 4, 74-102.
[23] Sun XC, Hu CX, Tan QL, Liu JS, Liu HE ( 2009). Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress. Ann Bot 104, 345-356.
doi: 10.1093/aob/mcp133
[24] Wilkinson S, Davies WJ ( 2002). ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ 25, 195-210.
doi: 10.1046/j.0016-8025.2001.00824.x
[25] Wu SW, Hu CX, Tan QL, Nie ZJ, Sun XC ( 2014). Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat (Triticum aestivum) under drought stress. Plant Physiol Biochem 83, 365-374.
[26] Xiong LM, Ishitani M, Lee H, Zhu JK ( 2001). The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cof- actor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13, 2063-2084.
[27] Xiong LM, Zhu JK ( 2001). Abiotic stress signal transduction in plants: molecular and genetic perspectives. Physiol Plant 112, 152-166.
doi: 10.1034/j.1399-3054.2001.1120202.x
[28] Yue SY, Ming CZ, Zhang JC, Tian XL, Duan LS, Li ZH ( 2012). Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63, 3741-3748.
[29] Yue YS, Zhang MC, Zhang JC, Duan LS, Li ZH ( 2011). Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco( Nicotiana tabacum cv. ‘Xanthi-nc’) results in enhanced drought tolerance. Plant Sci 181, 405-411.
[30] Zhang M, Hu CX, Zhao XH, Tan QL, Sun XC, Cao AY, Cui M, Zhang Y ( 2012). Molybdenum improves antioxidant and osmotic-adjustment ability against salt stress in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). Plant Soil 355, 375-383.
[31] Zhu JK ( 2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-273.
doi: 10.1146/annurev.arplant.53.091401.143329
[1] 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773.
[2] 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应[J]. 植物生态学报, 2018, 42(2): 240-251.
[3] 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032.
[4] 岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11): 1199-1207.
[5] 郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪. 拔节孕穗期小麦干旱胁迫下生长代谢变化规律[J]. 植物生态学报, 2016, 40(12): 1319-1327.
[6] 龙海涛, 李丽梅, 谢泽虹, 刘帅, 李晓云, 邓斌, 刘海燕, 李玲. 综合隶属函数法评价花生品种抗旱性与AhNCED1基因表达的关系[J]. 植物学报, 2015, 50(6): 706-712.
[7] 安东升, 曹娟, 黄小华, 周娟, 窦美安. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用[J]. 植物生态学报, 2015, 39(4): 398-406.
[8] 刘小龙, 李霞, 钱宝云. 外源Ca2+对PEG处理下转C4PEPC基因水稻光合生理的调节[J]. 植物学报, 2015, 50(2): 206-216.
[9] 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739.
[10] 邱权, 潘昕, 李吉跃, 王军辉, 马建伟, 杜坤. 青藏高原20种灌木抗旱形态和生理特征[J]. 植物生态学报, 2014, 38(6): 562-575.
[11] 苗红霞, 王园, 徐碧玉, 刘菊华, 贾彩红, 张建斌, 王卓, 孙佩光, 金志强. 香蕉MaASR1基因的抗干旱作用[J]. 植物学报, 2014, 49(5): 548-559.
[12] 王沛雅, 周剑平, 王治业, 张军, 强维亚, 杨涛, 郭琪, 杨晖. 油菜素内酯合成酶基因DAS5促进杨树生长及提高抗旱性的作用[J]. 植物学报, 2014, 49(4): 407-416.
[13] 刘芳, 左照江, 许改平, 吴兴波, 郑洁, 高荣孚, 张汝民, 高岩. 迷迭香对干旱胁迫的生理响应及其诱导挥发性有机化合物的释放[J]. 植物生态学报, 2013, 37(5): 454-463.
[14] 刘华伟, 林晓军, 孙超, 李强, 杨呼, 郭蔼光. 接种两种固氮菌增强小麦幼苗抗渗透胁迫及生长能力[J]. 植物生态学报, 2013, 37(1): 70-79.
[15] 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J]. 植物生态学报, 2012, 36(9): 973-981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Dong-Yao Gao, Zhao-Shi Xu, Yi He, Yong-Wei Sun, You-Zhi Ma, and Lan-Qin Xia. Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting[J]. Journal of Integrative Plant Biology, 2014, 56(5): 480 -491 .
[2] 罗隆诚, 冯新灵. 学术论文署名刍议[J]. 植物生态学报, 2007, 31(3): 548 .
[3] 李文政. 甜菜树属(中国山柚子科新纪录属)一新种[J]. Plant Diversity, 1989, 11(04): 1 -3 .
[4] 黄健. 西藏典型草原区范围的探讨[J]. 植物生态学报, 1992, 16(3): 292 .
[5] 张睿鹂, 贾茵, 张启翔. 滇北球花报春天然群体表型变异研究[J]. 生物多样性, 2008, 16(4): 362 -368 .
[6] Hao-qin Xiong. Soil nutrient patchiness affects nutrient use efficiency, though not photosynthesis and growth of parental Glechoma longituba ramets: both patch contrast and direction matter[J]. Journal of Plant Ecology, 2010, 3(2): 131 -137 .
[7] GAO Lian-Ming, LI De-Zhu, ZHANG Chang-Qin. [J]. Journal of Systematics and Evolution, 2003, 41(2): 173 -179 .
[8] 徐继. 保护固氮酶免受氧破坏的蛋白Fe—S蛋白Ⅱ[J]. 植物学报, 1986, 4(12): 1 -4 .
[9] 王凤英1, 胡永红1、2, 田旗1. 低温胁迫对海岛植物普陀樟抗寒性生理指标的影响[J]. Plant Diversity, 2010, 32(S17): 97 .
[10] . [J]. Journal of Systematics and Evolution, 0, (): 0 .