植物学报 ›› 2018, Vol. 53 ›› Issue (4): 487-501.doi: 10.11983/CBB17082

• 研究报告 • 上一篇    下一篇

玉米叶形相关性状的Meta-QTL及候选基因分析

郭书磊1,2, 张君1, 齐建双1, 岳润清1, 韩小花1, 燕树锋1, 卢彩霞1, 傅晓雷1, 陈娜娜1, 库丽霞2,*(), 铁双贵1,*()   

  1. 1河南省农业科学院粮食作物研究所, 河南省玉米生物学重点实验室, 郑州 450002
    2河南农业大学农学院, 河南粮食作物协同创新中心, 郑州 450002
  • 收稿日期:2017-04-13 接受日期:2017-10-25 出版日期:2018-07-01 发布日期:2018-09-11
  • 通讯作者: 库丽霞,铁双贵 E-mail:kulixia0371@163.com;tieshuanggui@126.com
  • 作者简介:† 共同第一作者。
  • 基金资助:
    河南省现代农业产业技术体系专项(No.S2015-02-G02)、河南省科技开放合作项目(No.172106000040)、中国博士后科学基金(No.2017M612404)和河南省博士后科研资助项目(No.1515)

Analysis of Meta-quantitative Trait Loci and Their Candidate Genes Related to Leaf Shape in Maize

Guo Shulei1,2, Zhang Jun1, Qi Jianshuang1, Yue Runqing1, Han Xiaohua1, Yan Shufeng1, Lu Caixia1, Fu Xiaolei1, Chen Nana1, Ku Lixia2,*(), Tie Shuanggui1,*()   

  1. 1Henan Provincial Key Lab of Maize Biology, Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
    2Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agriculture University, Zhengzhou 450002, China
  • Received:2017-04-13 Accepted:2017-10-25 Online:2018-07-01 Published:2018-09-11
  • Contact: Ku Lixia,Tie Shuanggui E-mail:kulixia0371@163.com;tieshuanggui@126.com
  • About author:† These authors contributed equally to this paper

摘要:

叶长、叶宽、叶面积及叶夹角不仅影响玉米(Zea mays)光合效率, 也是株型的重要构成因素。通过对620个叶形QTL进行整合, 构建不同遗传背景下的叶形QTL整合图谱, 利用元分析发掘出22个叶长、22个叶宽、12个叶面积以及17个叶夹角mQTL; 进一步运用生物信息学手段, 确定44个与叶片发育密切相关的候选基因。分析发现, 仅有NAL7-likeYABBY6- likeGRF2等13个基因位于mQTL区间内, 而玉米中已克隆的KNOTTED1AN3/GIF1rgd1/lbl1mwp1SRL2-likeHYL1-likeCYCB2;4-like等水稻(Oryza sativa)和拟南芥(Arabidopsis thaliana)叶形同源基因位于未被整合的QTL内; 对44个候选基因在叶片长、宽、厚发育过程中基部-末端、中央-边缘、远轴-近轴的调控机理进行归纳分析, 发现玉米中仅有少数几个候选基因被报道, 揭示了叶形发育的部分分子机理。因此, 对玉米叶形相关mQTL/QTL及基因进行全面深入的分析, 不仅有助于增加对其遗传结构的了解, 发掘更多候选基因, 阐明叶形发育和形成的分子机制, 还可为耐密理想株型的分子标记辅助选择提供依据。

关键词: 玉米, 叶长, 叶宽, 叶面积, 叶夹角, 元分析, meta-QTL, 候选基因

Abstract:

Leaf length, width, area, and angle are important components of plant architecture but also affect the efficiency of photosynthesis in maize. In this study, 620 quantitative trait loci (QTL) were used to construct an integrated map related to maize leaf shape; 22 maize QTL (mQTL) for leaf length, 22 for leaf width, 12 for leaf area and 17 for leaf angle were estimated by meta-analysis. Further bioinformatics analysis identified 44 candidate genes closely related to leaf shape within the mQTL region, with some unintegrated QTL. However, only 13 candidate genes, including NAL7-like, YABBY6-like, and GRF2, were located in the mQTL region. Most of the candidate genes, such as the cloned genes KNOTTED1, AN3/GIF1, rgd1/lbl1 and mwp1 in maize and SRL2-like, HYL1-like, and CYCB2;4-like in rice and Arabidopsis thaliana homologous genes were projected onto the interval of unintegrated QTL. The regulation mechanism of 44 candidate genes is summarized and analyzed in the development of leaf length, width and thickness, by proximal-distal, central-marginal and adaxial-abaxial. Only a few known genes revealed part of the molecular mechanism of leaf deve- lopment in maize. Further research of the mQTL/QTL and related genes will create a global view of the genetic architecture of maize leaf shape, provide useful biological information for fine mapping QTL, and identify more candidate genes to clarify the molecular mechanism of leaf morphogenesis and provide a theoretical base for ideal plant-architecture improvement of maize marker-assisted breeding.

Key words: maize (Zea mays), leaf length, leaf width, leaf area, leaf angle, meta-analysis, meta-QTL, candidate gene

表1

玉米叶形相关QTL信息整合"

Parents Type of Pop. Pop.
size
No. of
QTL for
LL
No. of
QTL for
LW
No. of
QTL for
LAr
No. of QTL for LA No./type
of marker
Analysis method Reference
B73×G79 F2:3 214 7 185/RFLP IM Agrama et al., 1999
B73×Mo17 RIL 180 9 192/SSR CIM Mickelson et al., 2002
H21×Mo17 F2:3 120 7 102/SSR CIM 于永涛等, 2006
Zi330×K36 F2:3 114 2 90/SSR CIM 于永涛等, 2006
Ye478×Dan340 F2:3 397 6 138/SSR CIM 路明等, 2007
Mo17×Huangzao4 RIL 239 4 2 5 98/SSR CIM 郑祖平等, 2007
Ye478×Wu312 RIL 218 7 184/SSR ICIM 刘建超等, 2010
Yu82×Shen137 F2:3 229 3 4 13 3 222/SSR CIM Ku et al., 2010, 2012a
Yu82×Yu87-1 F2:3 256 5 5 5 216/SSR CIM Ku et al., 2012b
B73/Mo17 etc. NAM 4892 36 34 30 203000/SNP GWAS Tian et al., 2011
N6×BT-1 RIL 250 6 207/SSR CIM 李贤唐等, 2011
Y105×Y106 F2 189 5 7 6 8 215/SSR ICIM 郭莹, 2012
Y114×Y115 F2 189 1 1 2 3 204/SSR ICIM 郭莹, 2012
Ye478×Wu312 RIL 218 14 7 9 184/SSR CIM Cai et al., 2012
Yu82×D132 F2:3 245 18 204/SSR CIM Ku et al., 2012
B73×1212 RIL 325 67 62 208/SSR ICIM 唐登国, 2013
B73×Mo17 RIL 93 1 2 3 IBM2 map CIM Wassom, 2013
CY5×YL106 F2:3 144 8 212/SSR CIM 刘正等, 2014
Z58/87-1//
PH6WC/Zi330
CP 228 13 225/SSR IM 张姿丽等, 2014b
T4×T19 F2:3 232 4 81/SSR CIM 张姿丽等, 2014a
Yu82×Yu87-1 RIL 208 18 1370/SNP CIM Guo et al., 2015
Yu82×Shen137 RIL 197 9 1411/SNP CIM Guo et al., 2015
Zong3×Yu87-1 RIL 223 10 1479/SNP CIM Guo et al., 2015
Yu537A×Shen137 RIL 212 9 1371/SNP CIM Guo et al., 2015
B73×Mo17 DH 221 9 17 16 12 5935/bin markers ICIM 张志腾, 2015
Xu178×K12 RIL 150 34 191/SSR CIM 常立国等, 2016
M1-7×SYF F2 259 36 218/SSR CIM 安允权等, 2016
Yu82×D132 RIL 234 5 7 4 1226/SNP CIM Wei et al., 2016

表2

mQTL/QTL区域内的玉米叶形候选基因"

Bin mQTL/QTL CI (cM) Candidate gene Annotation Homologous gene E-value Reference
1.02 mQTLW1-1 153.8-158.3 GRMZM2G480386 NAL7-like Os03g0162000/YUCCA7 0 Fujino et al., 2008
1.04 q12SevLW1 270.6-286.2 GRMZM2G011483 SRL2-like Os03g19520/SRL2 0 Liu et al., 2016
1.05 mQTLW1-2 485.9-505.6 GRMZM2G141955 YABBY6-like Os12g42610/YAB6 3E-88 Toriba et al., 2007;
Zhang et al., 2009
GRMZM2G003509 PHB-like AT2G34710/AtHB14 0 Kim et al., 2003; Mallory et al., 2004
1.09 mQTLW1-3 820.6-845.5 GRMZM2G018414 GRF8 AT4G37740/AtGRF2 4E-37 Debernardi et al., 2014
1.10 q4LWm139 873.7-902.1 GRMZM2G017087 KNOTTED1 AT4G08150/KN1 2E-114 Ramirez et al., 2009
GRMZM2G178261 GRF1-like AT2G22840/AtGRF1 2E-66 Kim et al., 2003
GRMZM2G180246 AN3/GIF1 AT5G28640/AtAN3/GIF1 1E-36 Nelissen et al., 2015
1.11 q4LLm155 941.6-1022.3 GRMZM2G135447 OSH43-like Os03g0771500/OsH43 4E-99 Sentoku et al., 2000
2.02 q3LAr2a 67.5-79.7 GRMZM2G174784 AP2-like AT4G36920/AP2 7E-102 Würschum et al., 2006; Mlotshwa et al., 2006
2.02 mQTLW2-1 118.3-147.8 GRMZM2G102346 NAL1-like Os04g52479/NAL1 0 Kubo et al., 2017
GRMZM2G041223 GRF6 AT3G13960/AtGRF5 1E-36 Horiguchi et al., 2006; Debernardi et al., 2014
2.06 q4RLAr2 355.7-374.4 GRMZM2G444808 HYL1-like AT1G09700/HYL1 6E-56 Liu et al., 2011
2.06 q8SecLW2 370.0-381.6 GRMZM2G083972 LNG2-like AT3G02170/LNG2 6E-57 Lee et al., 2006
GRMZM2G161382 CYCD3;3-like AT3G50070/CYCD3;3 5E-56 Dewitte et al., 2007
2.07 q7LL2b 450.0-461.9 GRMZM2G004619 GRF4 AT4G37740/AtGRF2 5E-28 Kim et al., 2003
2.10 q12LAr2 713.1-732.4 GRMZM2G146688 ANT-like AT4G37750/ANT 1E-131 Mizukami and Fis- cher, 2000
3.02 q4LWm309 69.6-90.3 GRMZM2G143235 ROT3-like AT4G36380/ROT3 1E-176 Kim et al., 1998
3.06 mQTLW3-2 368.5-390.3 GRMZM2G118250 AS2-like AT1G65620/AS2 1E-66 Iwakawa et al., 2007
3.08 q4LWm410 613.6-653.7 GRMZM2G437460 ARF3-like AT2G33860/ARF3/ETT 1E-169 Kelley et al., 2012
4.04 q13NLW4 220.5-230.6 GRMZM2G402653 OSH1-like Os03g0727000/OsH1 1E-75 Matsuoka et al., 1993
4.06 mQTLW4 373.7-399.4 GRMZM2G124566 GRF9-like AT2G36400/AtGRF3 1E-36 Kim et al., 2003
4.08 q7LL4 429.5-451.0 GRMZM2G075117 CYCD3;1-like AT4G34160/CYCD3;1 4E-47 Dewitte et al., 2007
GRMZM2G105335 GRF3 AT3G13960/AtGRF5 8E-49 Horiguchi et al., 2006; Debernardi et al., 2014
5.03 q4LWm602 268.8-295.0 GRMZM2G361518 AGO10-like AT5G43810/AGO10/ZLL 0 Zhu et al., 2011; Roodbarkelari et al., 2015
5.03 q4LLm605 280.1-296.1 GRMZM2G171349 COW1-like AT4G34580/COW1 3E-66 Woo et al., 2007
5.06 q4LLm661 500.7-521.1 GRMZM2G034876 GRF1 AT3G13960/AtGRF5 1E-47 Horiguchi et al., 2006; Debernardi et al., 2014
5.07 mQTLW5-3 556.7-578.5 GRMZM5G893117 GRF9 AT3G13960/AtGRF5 1E-27 Horiguchi et al., 2006; Debernardi et al., 2014
6.01 q8FirLW6-1 82.3-93.9 GRMZM2G122537 PRS1-like AT2G28610/PRS1 6E-29 Matsumoto and Ok- ada, 2001; Nakata
et al., 2012
GRMZM2G020187 rgd1/lbl1 AT5G23570/SGS3 1E-157 Dotto et al., 2014
mQTL/QTL CI (cM) Candidate gene Annotation Homologous gene E-value Reference
6.01 mQTLAr6 92.8-108.9 GRMZM2G098594 GRF14 AT3G13960/AtGRF5 1E-36 Horiguchi et al., 2006; Debernardi
et al., 2014
6.02 q7PLL6 123.0-144.8 GRMZM2G073671 CYCB2;3-like AT1G20610/CYCB2;3 1E-144 Eloy et al., 2011
GRMZM2G157820 CLF-like AT2G23380/CLF 0 Menges et al., 2005; Schatlowski et al., 2010
6.04 q4LWm706 158.2-205.1 GRMZM5G850129 GRF7 AT3G13960/AtGRF5 4E-41 Horiguchi et al., 2006; Debernardi et al., 2014
7.00 q4LWm762 8.0-93.0 GRMZM2G028041 OSH15-like Os07g0129700/OsH15 1.E-168 Nagasaki et al., 2001
GRMZM2G019200 DRL1-like Os11g0312782/DRL1 0 Jun et al., 2015
7.02 q12EigLW7 200.7-217.9 GRMZM2G107377 CYCD3;2-like AT5G67260/CYCD3;2 8E-49 Dewitte et al., 2007
7.02 q12FirLW7 229.3-246.3 GRMZM2G082264 mwp1 Os09g23200/SLL1/Kan1 2E-170 Candela et al., 2008
7.03 q3LW7 380.6-498.2 GRMZM2G096709 GRF10 AT4G37740/AtGRF2 4E-29 Kim et al., 2003; Deb- ernardi et al., 2014
8.08 q3LW8 599.1-603.8 GRMZM5G874163 ARF4-like AT5G60450/ARF4 7E-120 Pekker et al., 2005;
Hunter et al., 2006
9.03 mQTLW9 206.1-230.6 GRMZM2G119359 GRF12 AT2G06200/AtGRF6 1E-30 Kim et al., 2003;
Liang et al., 2014
GRMZM5G870176 NRL-like Os12g36890/CSLD4 0 Hu et al., 2010
10.04 mQTLW10 295.6-327.3 GRMZM2G078641 GRF2 GRAT3G13960/AtGRF7 3E-156 Horiguchi et al., 2006; Debernardi et al., 2014
10.06 q1HNLAr10 367.0-383.9 GRMZM2G061287 CYCB2;4-like AT1G76310/CYCB2;4 9E-148 Menges et al., 2005; Eloy et al., 2011

图1

整合图谱中叶形相关mQTL在玉米各染色体上的分布Chr: 染色体。染色体上红色区域为mQTL重叠部分所在染色体的位置; 染色体左侧为整合后mQTL的名称及位置分布; 染色体右侧为整合图谱中的标记及遗传图距(cM)。"

图2

玉米44个叶形候选基因的氨基酸序列聚类进化树方框标注的为玉米中已克隆且功能已知的叶形候选基因蛋白功能"

42 Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI (2006). LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133, 4305-4314.
43 Liang G, He H, Li Y, Wang F, Yu DQ (2014). Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis.Plant Physiol 164, 249-258.
44 Liu XF, Li M, Liu K, Tang D, Sun MF, Li YF, Shen Y, Du GJ, Cheng ZK (2016). Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot 67, 2139-2150.
45 Liu ZY, Jia LG, Wang H, He YK (2011). HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways.J Exp Bot 62, 4367-6381.
46 Luan WJ, Liu YQ, Zhang FX, Song YL, Wang ZY, Peng YK, Sun ZX (2011). OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J 9, 513-524.
47 Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, Barton MK, Bartel DP (2004). MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region.EMBO J 23, 3356-3364.
48 Matsumoto N, Okada K (2001). A homeobox gene, PRES- SED FLOWER, regulates lateral axis-dependent deve- lopment of Arabidopsis flowers. Genes Dev 15, 3355-3364.
49 Matsuoka M, Ichikawa H, Saito A, Tada Y, Fujimura T, Kano-Murakami Y (1993). Expression of a rice homeobox gene causes altered morphology of transgenic plants.Plant Cell 5, 1039-1048.
50 Menges M, de Jager SM, Gruissem W, Murray JAH (2005). Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control.Plant J 41, 546-566.
51 Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002). Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize.Crop Sci 42, 1902-1909.
52 Mizukami Y, Fischer RL (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97, 942-947.
53 Mlotshwa S, Yang ZY, Kim YJ, Chen XM (2006). Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana.Plant Mol Biol 61, 781-793.
54 Nagasaki H, Sakamoto T, Sato Y, Matsuoka M (2001). Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15.Plant Cell 13, 2085-2098.
55 Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K (2012). Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24, 519-535.
56 Nardmann J, Ji JB, Werr W, Scanlon MJ (2004). The maize duplicate genes narrow sheath 1 and narrow sheath 2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131, 2827-2839.
57 Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, Van Bel M, Vervoort M, Candaele J, de Block J, Aes- aert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inzé D, De Jaeger G (2015). Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf.Plant Cell 27, 1605-1619.
58 Pekker I, Alvarez JP, Eshed Y (2005). Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity.Plant Cell 17, 2899-2910.
59 Qi J, Qian Q, Bu QY, Li SY, Chen Q, Sun JQ, Liang WX, Zhou YH, Chu CC, Li XG, Ren FG, Palme K, Zhao BR, Chen JF, Chen MS, Li CY (2008). Mutation of the rice Narrow leaf1 gene, which encodes a novel protein, affects vein patterning and polar auxin transport. Plant Physiol 147, 1947-1959.
60 Ramirez J, Bolduc N, Lisch D, Hake S (2009). Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection.Plant Physiol 151, 1878-1888.
61 Reymond M, Muller B, Tardieu F (2004). Dealing with the genotype×environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters.J Exp Bot 55, 2461-2472.
62 Roodbarkelari F, Du F, Truernit E, Laux T (2015). ZLL/ AGO10 maintains shoot meristem stem cells during Arabidopsis embryogenesis by down-regulating ARF2- mediated auxin response.BMC Biol 13, 74.
63 Scanlon MJ, Chen KD, McKnight CC (2000). The narrow sheath duplicate genes: sectors of dual aneuploidy reveal ancestrally conserved gene functions during maize leaf development. Genetics 155, 1379-1389.
64 Schatlowski N, Stahl Y, Hohenstatt ML, Goodrich J, Schubert D (2010). The CURLY LEAF interacting protein BLISTER controls expression of polycomb-group target genes and cellular differentiation of Arabidopsis thaliana. Plant Cell 22, 2291-2305.
65 Sentoku N, Sato Y, Matsuoka M (2000). Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol 220, 358-364.
66 Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population.Nat Genet 43, 159-162.
67 Timmermans MC, Schultes NP, Jankovsky JP, Nelson T (1998). Leaf bladeless 1 is required for dorsoventrality of lateral organs in maize. Development 125, 2813-2823.
68 Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007). Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genom 277, 457-468.
69 Vercruyssen L, Verkest A, Gonzalez N, Heyndrickx KS, Eeckhout D, Han SK, Jégu T, Archacki R, Van Leene J, Andriankaja M, De Bodt S, Abeel T, Coppens F, Dhondt S, De Milde L, Vermeersch M, Maleux K, Gevaert K, Jerzmanowski A, Benhamed M, Wagner D, Vandepoele K, De Jaeger G, Inzé D (2014). ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.Plant Cell 26, 210-229.
70 Wassom JJ (2013). Quantitative trait loci for leaf angle, leaf width, leaf length, and plant height in a maize (Zea mays L.) B73 × Mo17 population. Maydica 58, 318-321.
71 Wei XM, Wang XB, Guo SL, Zhou JL, Shi Y, Wang HT, Dou DD, Song XH, Li GH, Ku LX, Chen YH (2016). Epistatic and QTL × environment interaction effects on leaf area-associated traits in maize.Plant Breed 135, 671-676.
72 Woo YM, Park HJ, Su’udi M, Yang JI, Park JJ, Back K, Park YM, An G (2007). Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65, 125-136.
73 Wu L, Zhang DF, Xue M, Qian JJ, He Y, Wang SC (2014). Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height.J Integr Plant Biol 56, 1053-1063.
74 Würschum T, Groß-Hardt R, Laux T (2006). APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem. Plant Cell 18, 295-307.
75 Yoshikawa T, Eiguchi M, Hibara KI, Ito JI, Nagato Y (2013). Rice SLENDER LEAF 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. J Exp Bot 64, 2049-2061.
76 Zhang DF, Li B, Jia GQ, Zhang TF, Dai JR, Li JS, Wang SC (2008). Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.). Plant Sci 175, 809-817.
77 Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009). SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.Plant Cell 21, 719-735.
1 安允权, 张君, 席章营, 李明娜, 李沛, 王顺喜, 张莹莹, 陈彦惠, 吴连成 (2016). 玉米不同叶位叶面积的QTL定位. 分子植物育种 14, 2113-2120.
2 常立国, 何坤辉, 刘建超, 薛吉全 (2016). 不同环境条件下玉米叶夹角的QTL定位. 玉米科学 24(4), 49-55.
3 郭莹 (2012). 利用不同F2群体定位玉米株型性状的QTL. 硕士论文. 重庆: 西南大学. pp. 45-47.
4 鞠培娜, 方云霞, 邹国兴, 彭友林, 孙川, 胡江, 董国军, 曾大力, 郭龙彪, 张光恒, 高振宇, 钱前 (2010). 一个新的水稻叶形突变体(tll1)的遗传分析与精细定位. 植物学报 45, 654-661.
5 李贤唐, 丁俊强, 王瑞霞, 吴建宇 (2011). 玉米株型相关性状的QTL定位与分析. 江苏农业科学 39(2), 21-25.
6 刘建超, 褚群, 蔡红光, 米国华, 陈范骏 (2010). 玉米SSR连锁图谱构建及叶面积的QTL定位. 遗传 32, 625-631.
7 刘正, 余婷婷, 梅秀鹏, 陈淅宁, 王国强, 王久光, 刘朝显, 王旭, 蔡一林 (2014). 玉米穗上叶夹角和叶间距的QTL定位. 农业生物技术学报 22, 177-187.
8 路明, 周芳, 谢传晓, 李明顺, 徐云碧, Warburton M, 张世煌 (2007). 玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析. 遗传 29, 1131-1138.
9 唐登国 (2013). 玉米叶宽和叶长性状的QTL定位与分析. 硕士论文. 雅安: 四川农业大学. pp. 29-43.
10 于永涛, 张吉民, 石云素, 宋燕春, 王天宇, 黎裕 (2006). 利用不同群体对玉米株高和叶片夹角的QTL分析. 玉米科学 14(2), 88-92.
11 袁园园, 王丽, 赵盼盼, 王林嵩 (2016). 棉花类结瘤素MtN21基因家族生物信息学分析. 植物学报 51, 515-524.
12 张姿丽, 蒋锋, 刘鹏飞, 陈青春, 张媛, 王晓明 (2014a). 甜玉米穗位叶面积QTL定位. 湖北农业科学 53, 1502-1505.
13 张姿丽, 刘鹏飞, 蒋锋, 陈青春, 张媛, 王晓明, 王汉宁 (2014b). 基于四交群体的玉米叶夹角和叶向值QTL定位分析. 中国农业大学学报 19(4), 7-16.
14 张志腾 (2015). 玉米叶型相关性状QTL定位与分析. 硕士论文. 雅安: 四川农业大学. pp. 21-23.
15 郑祖平, 黄玉碧, 田孟良, 谭振波 (2007). 不同供氮水平下玉米株型相关性状的QTLs定位和上位性效应分析. 玉米科学 15(2), 14-18.
16 Agrama HAS, Zakaria AG, Said FB, Tuinstra M (1999). Identification of quantitative trait loci for nitrogen use efficiency in maize.Mol Breed 5, 187-195.
17 Cai HG, Chu Q, Yuan LX, Liu JC, Chen XH, Chen FJ, Mi GH, Zhang FS (2012). Identification of quantitative trait loci for leaf area and chlorophyll content in maize ( Zea mays) under low nitrogen and low phosphorus supply. Mol Breed 30, 251-266.
18 Candaele J, Demuynck K, Mosoti D, Beemster GTS, Inzé D, Nelissen H (2014). Differential methylation during maize leaf growth targets developmentally regulated ge- nes.Plant Physiol 164, 1350-1364.
19 Candela H, Johnston R, Gerhold A, Foster T, Hake S (2008). The Milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves. Plant Cell 20, 2073-2087.
20 Darvasi A, Soller M (1997). A simple method to calculate resolving power and confidence interval of QTL map location.Behav Genet 27, 125-132.
21 Debernardi JM, Mecchia MA, Vercruyssen L, Smaczniak C, Kaufmann K, Inze D, Rodriguez RE, Palatnik JF (2014). Post-transcriptional control of GRF transcription factors by microRNA miR396 and GIF co-activator affects leaf size and longevity.Plant J 79, 413-426.
22 Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C, Nieuwland J, Prinsen E, Sundaresan V, Murray JAH (2007). Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses.Proc Natl Acad Sci USA 104, 14537-14542.
23 Ding ZQ, Lin ZF, Li Q, Wu H, Xiang CY, Wang JF (2015). DNL1, encodes cellulose synthase-like D4, is a major QTL for plant height and leaf width in rice(Oryza sativa L.). Biochem Biophys Res Commun 457, 133-140.
24 Dotto MC, Petsch KA, Aukerman MJ, Beatty M, Hammell M, Timmermans MC (2014). Genome-wide analysis of leaf bladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development. PLoS Genet 10, e1004826.
25 Eloy NB, de Freitas Lima M, Van Damme D, Vanhaeren H, Gonzalez N, de Milde L, Hemerly AS, Beemster GTS, Inzé D, Ferreira PCG (2011). The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. Plant J 68, 351-363.
26 Facette MR, Shen ZX, Björnsdóttir FR, Briggs SP, Smith LG (2013). Parallel proteomic and phosphoproteomic ana- lyses of successive stages of maize leaf development.Plant Cell 25, 2798-2812.
27 Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008). NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genom 279, 499-507.
28 Goffinet B, Gerber S (2000). Quantitative trait loci: a meta- analysis.Genetics 155, 463-473.
29 Guo SL, Ku LX, Qi JS, Tian ZQ, Han T, Zhang LK, Su HH, Ren ZZ, Chen YH (2015). Genetic analysis and major quantitative trait locus mapping of leaf widths at different positions in multiple populations.PLoS One 10, e0119095.
30 Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006). Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119, 37-42.
31 Hu J, Zhu L, Zeng DL, Gao ZY, Guo LB, Fang YX, Zhang GH, Dong GJ, Yan MX, Liu J, Qian Q (2010). Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73, 283-292.
32 Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig SR (2006). Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis.Development 133, 2973-2981.
33 Iwakawa H, Iwasaki M, Kojima S, Ueno Y, Soma T, Tanaka H, Semiarti E, Machida Y, Machida C (2007). Expression of the ASYMMETRIC LEAVES 2 gene in the adaxial domain of Arabidopsis leaves represses cell proliferation in this domain and is critical for the development of properly expanded leaves. Plant J 51, 173-184.
34 Jun SE, Cho KH, Hwang JY, Abdel-Fattah W, Hammermeister A, Schaffrath R, Bowman JL, Kim GT (2015). Comparative analysis of the conserved functions of Arabidopsis DRL1 and yeast KTI12.Mol Cells 38, 243-250.
35 Kelley DR, Arreola A, Gallagher TL, Gasser CS (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument deve- lopment and polarity determination in Arabidopsis.Deve- lopment 139, 1105-1109.
36 Kim GT, Tsukaya H, Uchimiya H (1998). The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12, 2381-2391.
37 Kim JH, Choi D, Kende H (2003). The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis.Plant J 36, 94-104.
38 Ku LX, Zhang J, Guo SL, Liu HY, Zhao RF, Chen YH (2012a). Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). J Exp Bot 63, 261-274.
39 Ku LX, Zhang J, Zhang JC, Guo SL, Liu HY, Zhao RF, Yan QX, Chen YH (2012b). Genetic dissection of leaf area by jointing two F2:3 populations in maize (Zea mays L.). Plant Breed 131, 591-599.
78 Zhu HL, Hu FQ, Wang RH, Zhou X, Sze SH, Liou LW, Barefoot A, Dickman M, Zhang XR (2011). Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development.Cell 145, 242-256.
40 Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010). Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121, 951-959.
41 Kubo FC, Yasui Y, Kumamaru T, Sato Y, Hirano HY (2017). Genetic analysis of rice mutants responsible for narrow leaf phenotype and reduced vein number.Genes Genet Syst 91, 235-240.
[1] 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696.
[2] 刘杰, 严建兵. 大刍草稀有等位基因促进玉米密植高产[J]. 植物学报, 2019, 54(5): 554-557.
[3] 李伟滔, 贺闽, 陈学伟. ZmFBL41 Chang7-2: 玉米抗纹枯病的关键利器[J]. 植物学报, 2019, 54(5): 547-549.
[4] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星. 水稻早衰突变体LS-es1的基因定位及候选基因分析[J]. 植物学报, 2019, 54(5): 606-619.
[5] 马燕婕, 何浩鹏, 沈文静, 刘标, 薛堃. 转基因玉米对田间节肢动物群落多样性的影响[J]. 生物多样性, 2019, 27(4): 419-432.
[6] 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351.
[7] 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925.
[8] 刘强, 蔡二丽, 张嘉琳, 宋翘, 李秀红, 窦宝成. 叶面积指数田间测量中有限长度平均法的改进[J]. 植物学报, 2018, 53(5): 671-685.
[9] 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219.
[10] 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994.
[11] 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760.
[12] 李荣改, 陆艳梅, 王月影, 王宝强, 宋炜, 张文英. 玉米粗缩病的分子研究新进展[J]. 植物学报, 2017, 52(3): 375-387.
[13] 李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究[J]. 植物生态学报, 2017, 41(12): 1289-1300.
[14] 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288.
[15] 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 于凤兰 王静萍 李京民 单雪琴. 乌桕桕脂中甾醇和其他成分分离鉴定[J]. 植物学报, 1989, 6(02): 121 -123 .
[2] 李爱芬 陈敏 周百成. 褐藻光合作用色素—蛋白质复合物——研究进展和问题[J]. 植物学报, 1999, 16(04): 365 -371 .
[3] 陈晓梅 郭顺星. 植物抗病性物质的研究进展[J]. 植物学报, 1999, 16(06): 658 -664 .
[4] 李继泉 金幼菊 沈应柏 洪蓉. 环境因子对植物释放挥发性化合物的影响[J]. 植物学报, 2001, 18(06): 649 -656 .
[5] (王伟杰和徐昌杰编译). 天然类胡萝卜素胭脂树素的生物合成[J]. 植物学报, 2005, 22(增刊): 157 .
[6] 李建霞, 张出兰, 夏晓飞, 赵良成. 植物冰冻切片条件的优化及其与石蜡切片在组织化学应用中的比较[J]. 植物学报, 2013, 48(6): 643 -650 .
[7] 蒋样明, 崔伟宏, 董前林. 基于空间技术的烤烟种植生态环境综合评价分析[J]. 植物生态学报, 2012, 36(1): 47 -54 .
[8] 胡承彪, 朱宏光, 韦源连. 不同生态地理区域杉木人工林土壤微生物及生化活性的研究[J]. 植物生态学报, 1991, 15(4): 303 -311 .
[9] 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较[J]. 植物生态学报, 2012, 36(3): 231 -242 .
[10] 安然, 龚吉蕊, 尤鑫, 葛之葳, 段庆伟, 晏欣. 不同龄级速生杨人工林土壤微生物数量与养分动态变化[J]. 植物生态学报, 2011, 35(4): 389 -401 .