Chinese Bulletin of Botany ›› 2025, Vol. 60 ›› Issue (6): 968-977.DOI: 10.11983/CBB24164 cstr: 32102.14.CBB24164
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Ruxin Zhang1, Chenrong Li1, Tongxin Wang1, Jie Li1, Tingge Li1, Huixian Xu1, Meier Li1, Ying Zhao1, Ting Peng2,3,*(
), Jian Wang1,*(
)
Received:2024-10-28
Accepted:2025-02-22
Online:2025-11-10
Published:2025-02-26
Contact:
Ting Peng, Jian Wang
Ruxin Zhang, Chenrong Li, Tongxin Wang, Jie Li, Tingge Li, Huixian Xu, Meier Li, Ying Zhao, Ting Peng, Jian Wang. Establishment of a Regeneration System for Viola × wittrockiana[J]. Chinese Bulletin of Botany, 2025, 60(6): 968-977.
| Cultivars | Callus formation rate of leaves (%) | Callus formation rate of petioles (%) | Differentiation rate of petiole- derived callus (%) |
|---|---|---|---|
| CJBG | 46.67±4.41 cd | 92.50±1.25 a | 4.17±1.44 cd |
| CJCJBG | 29.44±6.94 e | 91.67±4.16 a | 3.33±1.44 e |
| KJB | 55.56±2.55 b | 90.00±1.25 a | 6.67±1.44 c |
| PXP | 43.33±7.64 cd | 89.38±6.76 a | 15.83±1.44 a |
| LLBL | 73.89±3.47 a | 89.79+3.08 a | 5.83±1.41 cd |
| SX | 41.11±0.96 d | 95.00±2.73 a | 10.00±2.50 b |
| KM | 56.67±1.67 b | 94.58±1.91 a | 6.67±1.44 c |
| ATSL | 50.56±4.19 bc | 92.29±2.95 a | 11.67±1.44 b |
Table 1 Rates of callus induction and differentiation of different cultivars of Viola × wittrockiana
| Cultivars | Callus formation rate of leaves (%) | Callus formation rate of petioles (%) | Differentiation rate of petiole- derived callus (%) |
|---|---|---|---|
| CJBG | 46.67±4.41 cd | 92.50±1.25 a | 4.17±1.44 cd |
| CJCJBG | 29.44±6.94 e | 91.67±4.16 a | 3.33±1.44 e |
| KJB | 55.56±2.55 b | 90.00±1.25 a | 6.67±1.44 c |
| PXP | 43.33±7.64 cd | 89.38±6.76 a | 15.83±1.44 a |
| LLBL | 73.89±3.47 a | 89.79+3.08 a | 5.83±1.41 cd |
| SX | 41.11±0.96 d | 95.00±2.73 a | 10.00±2.50 b |
| KM | 56.67±1.67 b | 94.58±1.91 a | 6.67±1.44 c |
| ATSL | 50.56±4.19 bc | 92.29±2.95 a | 11.67±1.44 b |
| Type | Callus formation rate (%) | Callus growth state | Differentiation rate (%) |
|---|---|---|---|
| Y1 (1/2MS (sugar-free)+30 g∙L-1 sucrose+1.5 mg∙L-1 2,4-D+0.5 mg∙L-1 NAA+3.0 mg∙L-1 GA3) | 93.56±1.16 a | Pale yellow, loose, softer texture, fast growth | 10.37±1.28 b |
| Y2 (1/2MS (sugar-free)+30 g∙L-1 sucrose+1.5 mg∙L-1 2,4-D+1.5 mg∙L-1 KT) | 95.67±3.47 a | Yellow, dense, somewhat hard texture, slow growth | 18.52±1.28 a |
Table 2 Effect of different media on the differentiation rate of PXP
| Type | Callus formation rate (%) | Callus growth state | Differentiation rate (%) |
|---|---|---|---|
| Y1 (1/2MS (sugar-free)+30 g∙L-1 sucrose+1.5 mg∙L-1 2,4-D+0.5 mg∙L-1 NAA+3.0 mg∙L-1 GA3) | 93.56±1.16 a | Pale yellow, loose, softer texture, fast growth | 10.37±1.28 b |
| Y2 (1/2MS (sugar-free)+30 g∙L-1 sucrose+1.5 mg∙L-1 2,4-D+1.5 mg∙L-1 KT) | 95.67±3.47 a | Yellow, dense, somewhat hard texture, slow growth | 18.52±1.28 a |
| No. | Factor | Differentiation rate (%) | ||
|---|---|---|---|---|
| A (Carbohydrate sources) | B (2,4-D concentration) | C (6-BA concentration) | ||
| 1 | 1 | 1 | 1 | 8.33 |
| 2 | 1 | 2 | 3 | 13.33 |
| 3 | 1 | 3 | 2 | 8.33 |
| 4 | 2 | 1 | 3 | 26.67 |
| 5 | 2 | 2 | 2 | 23.33 |
| 6 | 2 | 3 | 1 | 20.00 |
| 7 | 3 | 1 | 2 | 10.00 |
| 8 | 3 | 2 | 1 | 13.33 |
| 9 | 3 | 3 | 3 | 11.67 |
| K1 | 0.10 | 0.15 | 0.14 | |
| K2 | 0.23 | 0.17 | 0.14 | |
| K3 | 0.12 | 0.13 | 0.17 | |
| Range (R) | 0.13 | 0.02 | 0.03 | |
| Order | A>C>B | |||
| Optimal level | A2 | B2 | C3 | |
| Optimal combination | A2B2C3 | |||
Table 3 The orthogonal experiment of adventitious bud differentiation of Viola × wittrockiana
| No. | Factor | Differentiation rate (%) | ||
|---|---|---|---|---|
| A (Carbohydrate sources) | B (2,4-D concentration) | C (6-BA concentration) | ||
| 1 | 1 | 1 | 1 | 8.33 |
| 2 | 1 | 2 | 3 | 13.33 |
| 3 | 1 | 3 | 2 | 8.33 |
| 4 | 2 | 1 | 3 | 26.67 |
| 5 | 2 | 2 | 2 | 23.33 |
| 6 | 2 | 3 | 1 | 20.00 |
| 7 | 3 | 1 | 2 | 10.00 |
| 8 | 3 | 2 | 1 | 13.33 |
| 9 | 3 | 3 | 3 | 11.67 |
| K1 | 0.10 | 0.15 | 0.14 | |
| K2 | 0.23 | 0.17 | 0.14 | |
| K3 | 0.12 | 0.13 | 0.17 | |
| Range (R) | 0.13 | 0.02 | 0.03 | |
| Order | A>C>B | |||
| Optimal level | A2 | B2 | C3 | |
| Optimal combination | A2B2C3 | |||
| Type | 6-BA (mg∙L-1) | 2,4-D (mg∙L-1) | Number of explants | Proliferation coefficient | Growth situation |
|---|---|---|---|---|---|
| Z1 | 0.5 | 0.5 | 45 | 2.20±0.20 c | ++ |
| Z2 | 1.0 | 0.5 | 45 | 3.29±0.22 a | |
| Z3 | 2.0 | 0.5 | 45 | 2.73±0.23 b | ++ |
| Z4 | 3.0 | 0.5 | 45 | 2.18±0.17 c | + |
Table 4 Effects of plant growth regulators on the adventitious bud proliferation of Viola × wittrockiana
| Type | 6-BA (mg∙L-1) | 2,4-D (mg∙L-1) | Number of explants | Proliferation coefficient | Growth situation |
|---|---|---|---|---|---|
| Z1 | 0.5 | 0.5 | 45 | 2.20±0.20 c | ++ |
| Z2 | 1.0 | 0.5 | 45 | 3.29±0.22 a | |
| Z3 | 2.0 | 0.5 | 45 | 2.73±0.23 b | ++ |
| Z4 | 3.0 | 0.5 | 45 | 2.18±0.17 c | + |
Figure 1 Regeneration via petiole-derived callus of Viola × wittrockiana (A) Sterile seedlings; (B) Petioles; (C), (D) Induction of callus; (E), (F) Differentiation of adventitious buds; (G) Proliferation of adventitious buds; (H) Induction of root; (I) Transplanting. Bars=1 cm
| [1] |
Ameri A, Davarynejad GH, Moshtaghi N, Tehranifar A (2020). The role of carbohydrates on the induction of somatic embryogenesis and the biochemical state of the embryogenic callus in Pyrus communis L. cv. ‘Dar Gazi’. Erwerbs-Obstbau 62, 411-419.
DOI |
| [2] | Babber S, Kulbhushan S (1991). Study of anatomy of vitrified structure in Viola tricolour L. Ann Biol 7, 93-95. |
| [3] | Bhardwaj R, Kumar M, Kaushal N, Kamboj AD, Krishnamoorthi A, Singh A, Motla R, Anushi (2024). From lab to bouquet: the biotechnological frontier in modern floriculture for sustainable and resilient flower farming. J Adv Biol Biotechnol 27, 119-137. |
| [4] | Chen YR (2013). The Transformation of Cold Response Gene CBF1 Into Petunia (Petunia hybrida Vilm.) and Pansy (Viola tricolor L.). Master’s thesis. Lanzhou: Lanzhou University. pp. 1-37. (in Chinese) |
| 陈玥如 (2013). 冷响应基因CBF1对矮牵牛和三色堇的遗传转化研究. 硕士论文. 兰州: 兰州大学. pp. 1-37. | |
| [5] | Ding SP, Yan JQ, Ji DF (1998). Effect of sugar sources on plant tissue culture. Chin Bull Bot 15, 42-46. (in Chinese) |
| 丁世萍, 严菊强, 季道藩 (1998). 糖类在植物组织培养中的效应. 植物学通报 15, 42-46. | |
| [6] |
Encina CL, Parisi A, O’Brien C, Mitter N (2014). Enhan-cing somatic embryogenesis in avocado (Persea americana Mill.) using a two-step culture system and including glutamine in the culture medium. Sci Hortic 165, 44-50.
DOI URL |
| [7] |
Fernandes L, Ramalhosa E, Baptista P, Pereira JA, Saraiva JA, Casal SIP (2019). Nutritional and nutraceutical composition of pansies (Viola × wittrockiana) during flowering. J Food Sci 84, 490-498.
DOI PMID |
| [8] | Fu JM, Guo HJ, Lou YH (2014). Method for improving pe-rennial ryegrass callus regeneration rate. Chinese Patent, CN103314860B. 2014-08-13. (in Chinese) |
| 傅金民, 郭慧娟, 娄燕宏 (2014). 一种提高多年生黑麦草愈伤组织再生率的方法. 中国专利, CN103314860B. 2014-08-13. | |
| [9] | Gandolfo E, Hakim G, Geraci J, Feuring V, Giardina E, Di Benedetto A (2016). Responses of pansy (Viola wittrockiana Gams.) to the quality of the growing media. J Exp Agric Int 12, 1-10. |
| [10] |
Gonçalves J, Borges JCF, Carlos LDA, Silva APCM, Souza FAD (2019). Bioactive compounds in edible flowers of garden pansy in response to irrigation and mycorrhizal inoculation. Rev Ceres 66, 407-415.
DOI URL |
| [11] |
González-Barrio R, Periago MJ, Luna-Recio C, Garcia- Alonso FJ, Navarro-González I (2018). Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chem 252, 373-380.
DOI PMID |
| [12] |
Jha SR, Naz R, Asif A, Okla MK, Soufan W, Al-Ghamdi AA, Ahmad A (2020). Development of an in vitro propagation protocol and a sequence characterized amplified region (SCAR) marker of Viola serpens Wall. ex Ging. Plants 9, 246.
DOI URL |
| [13] |
Jheng FY, Do YY, Liauh YW, Chung JP, Huang PL (2006). Enhancement of growth and regeneration efficiency from embryogenic callus cultures of Oncidium ‘Gower Ramsey’ by adjusting carbohydrate sources. Plant Sci 170, 1133-1140.
DOI URL |
| [14] |
Khajuria AK, Hano C, Bisht NS (2021). Somatic embryogenesis and plant regeneration in Viola canescens Wall. ex. Roxb.: an endangered himalayan herb. Plants 10, 761.
DOI URL |
| [15] | Li XQ, Sheng YH, Fu YG, Zhou Y, Zhao Y, Ling P, Song XQ, Wang J (2020). Establishment of efficient regeneration system of Oncidium. J South Agric 51, 1169-1175. (in Chinese) |
| 李雪青, 盛玉辉, 付瑛格, 周扬, 赵莹, 凌鹏, 宋希强, 王健 (2020). 文心兰高效再生体系的建立. 南方农业学报 51, 1169-1175. | |
| [16] | Long Y, Yang Y, Pan GT, Shen YO (2022). New insights into tissue culture plant-regeneration mechanisms. Front Plant Sci 13, 9267s52. |
| [17] |
Ma J, Li Q, Zhang L, Cai S, Liu YY, Lin JC, Huang RF, Yu YQ, Wen MZ, Xu TD (2022). High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. J Integr Plant Biol 64, 2425-2437.
DOI URL |
| [18] |
Mercuri A, Sacchetti A, De Benedetti L, Schiva T, Alberti S (2002). Green fluorescent flowers. Plant Sci 162, 647-654.
DOI URL |
| [19] |
Nanjaraj Urs AN, Hu YL, Li PW, Yuchi Z, Chen YH, Zhang Y (2019). Cloning and expression of a nonribosomal peptide synthetase to generate blue rose. ACS Synth Biol 8, 1698-1704.
DOI PMID |
| [20] |
Nauenburg JD, Buttler KP (2007). Validierung des namens Viola wittrockiana. Kochia 2, 37-41.
DOI URL |
| [21] | Niu YY, Wang M, Li WJ, Li B, Fan MJ, Cheng YH, Wang CF (2023). Cultivation technical regulations of Viola tricolor. Hortic Seed 43(7), 45-46. (in Chinese) |
| 牛燕燕, 王梅, 李文静, 李冰, 范明杰, 成永慧, 王超凡 (2023). 三色堇栽培技术规程. 园艺与种苗 43(7), 45-46. | |
| [22] |
Núñez S, López V, Moliner C, Valero MS, Gómez-Rincón C (2023). Lipid lowering and anti-ageing effects of edible flowers of Viola × wittrockiana Gams in a Caenorhabditis elegans obese model. Food Funct 14, 8854-8864.
DOI URL |
| [23] |
Satyavathi VV, Jauhar PP, Elias EM, Rao MB (2004). Effects of growth regulators on in vitro plant regeneration in durum wheat. Crop Sci 44, 1839-1846.
DOI URL |
| [24] |
Tang J, Wang CK, Pan XL, Yan H, Zeng GZ, Xu WY, He WJ, Daly NL, Craik DJ, Tan NH (2010). Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides 31, 1434-1440.
DOI PMID |
| [25] |
Vukics V, Kery A, Guttman A (2008). Analysis of polar antioxidants in heartsease (Viola tricolor L.) and garden pansy (Viola × wittrockiana Gams.). J Chromatogr Sci 46, 823-827.
DOI PMID |
| [26] |
Wang J, Bao MZ (2007). Plant regeneration of pansy (Viola wittrockiana) ‘Caidie’ via petiole-derived callus. Sci Hortic 111, 266-270.
DOI URL |
| [27] | Wijowska M, Kuta E, Przywara L (1999). In vitro culture of unfertilized ovules of Viola odorata L. Acta Biol Cracov Ser Bot 41, 95-101. |
| [28] | Wu Q, Qin JJ, Chen W, Su X (2016). Research on the tissue culture and rapid propagation of medicinal plant Viola philippica. J Tradit Chin Vet Med 35(3), 5-8. (in Chinese) |
| 吴琼, 秦晶晶, 陈纹, 苏雪 (2016). 药用植物紫花地丁组织培养与快速繁殖技术研究. 中兽医医药杂志 35(3), 5-8. | |
| [29] |
Xu JP, Naing AH, Bunch H, Jeong J, Kim H, Kim CK (2021). Enhancement of the flower longevity of petunia by CRISPR/Cas9-mediated targeted editing of ethylene biosynthesis genes. Postharvest Biol Technol 174, 111460.
DOI URL |
| [30] | Yang JL, Rao YF, Zhang RH, Zhou GL, Lin CF, He YH, Ning GG (2024). Establishment of an efficient leaf regeneration system for Pinguicula. Chin Bull Bot 59, 626-634. (in Chinese) |
|
杨佳丽, 饶羽菲, 张润花, 周国林, 林处发, 何燕红, 宁国贵 (2024). 捕虫堇叶片高效再生体系建立. 植物学报 59, 626-634.
DOI |
|
| [31] | Zhang ML (2021). Establishment of Suspension Cells in Chinese Jujube (Ziziphus jujuba Mill.) and Its Application in cAMP Synthesis and Regulation. Master’s thesis. Baoding: Hebei Agricultural University. pp. 1-35. (in Chinese) |
| 张梦玲 (2021). 枣悬浮细胞系的建立及其在cAMP合成调控中的应用. 硕士论文. 保定: 河北农业大学. pp. 1-35. | |
| [32] | Zhang QS (2009). Studies on Inheritance of Flower Color and Flower Color Patter and Tissue Culture of Pansy (Viola × wittrockiana) and Viola (V. cornuta). Master’s thesis. Wuhan: Huazhong Agricultural University. pp. 1-63. (in Chinese) |
| 张其生 (2009). 三色堇与角堇花色、花斑遗传规律及组织培养的研究. 硕士论文. 武汉: 华中农业大学. pp. 1-63. |
| [1] | Liangliang Zhang, Xianting Wang, Yong Chen, Yifan Zhu, Xinyuan Lu, Zaitseva Svetlana Mikhailovna, Haiyun Yang. Establishment of Tissue Culture and Rapid Propagation System of Wild Plant Parrotia subaequalis Under National First Class Protection [J]. Chinese Bulletin of Botany, 2026, 61(1): 1-0. |
| [2] | Feng Shuaishuai, Qiao Feng, Li Aihua, He Xuan, Jiang Tingting, Han Wei , Yang Zong, Huang Ailing, Li Quanxi, Liu jin, Tan Deyun. Establishment of an In Vitro Regeneration System for Stem Segments of Blackberry ‘APF - 190T’ [J]. Chinese Bulletin of Botany, 2026, 61(1): 1-0. |
| [3] | Liru Zhou, Yan Ao, Jing Zhong. Adventitious Bud Induction and Browning Inhibition of Xanthoceras sorbifolium Seed Kernels [J]. Chinese Bulletin of Botany, 2025, 60(6): 957-967. |
| [4] | Jingjing Li, Yanfei Li, Anqi Wang, Jiaying Wang, Chengyan Deng, Min Lu, Jianying Ma, Silan Dai. Establishment of Regeneration and Genetic Transformation System for Chrysanthemum × morifolium ‘Wandai Fengguang’ [J]. Chinese Bulletin of Botany, 2025, 60(4): 597-610. |
| [5] | Tong Li, Churan Li, Zhiyu Zhang, Xiaoman Fu, Yun Liu, Yingjun Zhang, Liying Yang, Ping Zhao. A Preliminary Study on Tissue Culture and Rapid Propagation Technology of Phyllanthus acidus [J]. Chinese Bulletin of Botany, 2025, 60(4): 611-620. |
| [6] | Wen Feng, Yuguo Wang. Establishment of an In Vitro Regeneration System for Stem Segments of Cultivated Dioscorea polystachya [J]. Chinese Bulletin of Botany, 2024, 59(5): 792-799. |
| [7] | Yuze Liu, Yifei Wang, Weizhen Ren, Hao Li, Bin Lu, Bingshe Lu, Xiaoyue Yu. Establishment of Immature Embryo Rescue and Regeneration System for Pyrus calleryana cv. ‘Cleveland’ [J]. Chinese Bulletin of Botany, 2024, 59(5): 800-809. |
| [8] | Hao Zeng, Peifang Li, Zhihui Guo, Chunlin Liu, Ying Ruan. Establishment of a Regeneration System for Lunaria annua [J]. Chinese Bulletin of Botany, 2024, 59(3): 433-440. |
| [9] | Xiaoyun Wu, Minling Liao, Xueru Li, Zichun Shu, Jiatong Xin, Bohan Zhang, Silan Dai. Establishment of Regeneration System of Chrysanthemum vestitum with Three Floret Forms [J]. Chinese Bulletin of Botany, 2024, 59(2): 245-256. |
| [10] | Shangwen Zhang, Shiyu Huang, Tianwei Yang, Ting Li, Xiangjun Zhang, Manrong Gao. Establishment of a Tissue Culture and Rapid Propagation System for Erythropalum scandens Based on Orthogonal Test [J]. Chinese Bulletin of Botany, 2024, 59(1): 99-109. |
| [11] | Chungang Xie, Zhe Liu, Shusheng Zhang, Haitao Hu. Establishment of In Vitro Regeneration System of Citrus australasica [J]. Chinese Bulletin of Botany, 2023, 58(6): 926-934. |
| [12] | Minling Liao, Ya Pu, Xiaoyun Wu, Chaofeng Ma, Wenkui Wang, Silan Dai. Establishment of Regeneration System of Chrysanthemum indicum in Pingtan with Various Ligulate Floret Form [J]. Chinese Bulletin of Botany, 2023, 58(3): 449-460. |
| [13] | Yefei Liu, Haixia Zhao, Xiping Jiang, Rui Qiu, Xinyue Zhou, Yan Zhao, Chunxiang Fu. Establishment of Highly Efficient Tissue Culture and Agrobacterium-mediated Callus Infection Systems for Hordeum brevisubulatum [J]. Chinese Bulletin of Botany, 2023, 58(3): 440-448. |
| [14] | LI Lu, JIN Guang-Ze, LIU Zhi-Li. Variations and correlations of lamina and petiole traits of three broadleaved species in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 687-699. |
| [15] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||