Chinese Bulletin of Botany ›› 2024, Vol. 59 ›› Issue (2): 245-256.DOI: 10.11983/CBB23084 cstr: 32102.14.CBB23084
• TECHNIQUE AND METHOD • Previous Articles Next Articles
Xiaoyun Wu, Minling Liao, Xueru Li, Zichun Shu, Jiatong Xin, Bohan Zhang, Silan Dai*()
Received:
2023-06-25
Accepted:
2023-09-19
Online:
2024-03-10
Published:
2024-03-10
Contact:
* E-mail: Xiaoyun Wu, Minling Liao, Xueru Li, Zichun Shu, Jiatong Xin, Bohan Zhang, Silan Dai. Establishment of Regeneration System of Chrysanthemum vestitum with Three Floret Forms[J]. Chinese Bulletin of Botany, 2024, 59(2): 245-256.
Figure 1 Capitula of wild-type strains of Chrysanthemum vestitum with three floret forms (A) Capitulum with a flat floret form; (B) Capitulum with a tubular floret form; (C) Capitulum with a mixed floret form. Bars=1 cm
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
A1 | 0.5 | 1 |
A2 | 0.5 | 2 |
A3 | 0.5 | 3 |
A4 | 1 | 1 |
A5 | 1 | 2 |
A6 | 1 | 3 |
A7 | 2 | 1 |
A8 | 2 | 2 |
A9 | 2 | 3 |
Table 1 Culture medium settings for callus induction and adventitious buds differentiation of leaves of Chrysanthemum vestitum with flat floret form
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
A1 | 0.5 | 1 |
A2 | 0.5 | 2 |
A3 | 0.5 | 3 |
A4 | 1 | 1 |
A5 | 1 | 2 |
A6 | 1 | 3 |
A7 | 2 | 1 |
A8 | 2 | 2 |
A9 | 2 | 3 |
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
M1 | 0.1 | 0.1 |
M2 | 0.5 | 0.1 |
M3 | 1 | 0.1 |
M4 | 2 | 0.1 |
M5 | 0.1 | 0.5 |
M6 | 0.5 | 0.5 |
M7 | 1 | 0.5 |
M8 | 2 | 0.5 |
M9 | 0.1 | 1 |
M10 | 0.5 | 1 |
M11 | 1 | 1 |
M12 | 2 | 1 |
M13 | 0.1 | 2 |
M14 | 0.5 | 2 |
M15 | 1 | 2 |
M16 | 2 | 2 |
Table 2 Culture medium settings for callus induction and adventitious buds differentiation in the transverse thin cell layer of Chrysanthemum vestitum with flat floret form
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
M1 | 0.1 | 0.1 |
M2 | 0.5 | 0.1 |
M3 | 1 | 0.1 |
M4 | 2 | 0.1 |
M5 | 0.1 | 0.5 |
M6 | 0.5 | 0.5 |
M7 | 1 | 0.5 |
M8 | 2 | 0.5 |
M9 | 0.1 | 1 |
M10 | 0.5 | 1 |
M11 | 1 | 1 |
M12 | 2 | 1 |
M13 | 0.1 | 2 |
M14 | 0.5 | 2 |
M15 | 1 | 2 |
M16 | 2 | 2 |
No. | Basal medium | NAA (mg∙L-1) |
---|---|---|
R1 | 1/2MS | 0 |
R2 | 1/2MS | 0.2 |
R3 | 1/2MS | 0.5 |
Table 3 Rooting medium settings
No. | Basal medium | NAA (mg∙L-1) |
---|---|---|
R1 | 1/2MS | 0 |
R2 | 1/2MS | 0.2 |
R3 | 1/2MS | 0.5 |
Treatments | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient |
---|---|---|---|
A1 | 100.00±0 a | 62.50±1.29 b | 3.24±0.94 b |
A2 | 100.00±0 a | 72.92±1.67 ab | 3.82±1.29 a |
A3 | 100.00±0 a | 91.37±2.31 a | 2.05±1.67 cd |
A4 | 100.00±0 a | 89.58±2.05 ab | 4.08±1.26 a |
A5 | 100.00±0 a | 91.67±2.87 a | 4.34±2.34 a |
A6 | 100.00±0 a | 75.00±0.96 ab | 2.40±2.16 bc |
A7 | 97.92±0.37 a | 87.50±1.12 ab | 2.31±1.53 d |
A8 | 97.92±0.37 a | 77.08±2.11 ab | 3.04±1.21 cd |
A9 | 100.00±0 a | 89.58±1.77 ab | 3.61±1.46 bc |
Table 4 Effects of different medium settings on callus induction and adventitious bud differentiation of leaves of Chrysanthemum vestitum with flat floret form
Treatments | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient |
---|---|---|---|
A1 | 100.00±0 a | 62.50±1.29 b | 3.24±0.94 b |
A2 | 100.00±0 a | 72.92±1.67 ab | 3.82±1.29 a |
A3 | 100.00±0 a | 91.37±2.31 a | 2.05±1.67 cd |
A4 | 100.00±0 a | 89.58±2.05 ab | 4.08±1.26 a |
A5 | 100.00±0 a | 91.67±2.87 a | 4.34±2.34 a |
A6 | 100.00±0 a | 75.00±0.96 ab | 2.40±2.16 bc |
A7 | 97.92±0.37 a | 87.50±1.12 ab | 2.31±1.53 d |
A8 | 97.92±0.37 a | 77.08±2.11 ab | 3.04±1.21 cd |
A9 | 100.00±0 a | 89.58±1.77 ab | 3.61±1.46 bc |
Treatments | Callus formation rate (%) | Differentiation rate (%) |
---|---|---|
M1 | 80.00±7.12 b | 0.28±0.06 b |
M2 | 100.00±0.00 a | 0.49±0.08 a |
M3 | 87.33±2.62 b | 0.31±0.70 b |
M4 | 83.76±2.47 b | 0.15±0.40 bd |
M5 | 64.80±1.47 bc | 0.09±0.70 bc |
M6 | 77.93±3.93 b | 0.20±0.08 b |
M7 | 72.67±9.53 bc | 0.19±0.02 bc |
M8 | 81.76±2.68 b | 0.21±0.09 b |
M9 | 70.53±3.45 bc | 0.27±0.05 bc |
M10 | 78.76±2.78 b | 0.27±0.05 b |
M11 | 78.76±3.21 b | 0.32±0.17 b |
M12 | 90.60±2.30 ab | 0.37±0.13 b |
M13 | 53.06±9.69 bcd | 0.02±0.03 bcd |
M14 | 73.87±5.53 b | 0.03±0.05 bcd |
M15 | 50.33±5.44 bcd | 0.07±0.10 bcd |
M16 | 75.77±5.86 b | 0.03±0.05 bc |
Table 5 Effects of different medium settings on callus induction and adventitious bud differentiation in transverse thin cell layers of Chrysanthemum vestitum with flat floret form
Treatments | Callus formation rate (%) | Differentiation rate (%) |
---|---|---|
M1 | 80.00±7.12 b | 0.28±0.06 b |
M2 | 100.00±0.00 a | 0.49±0.08 a |
M3 | 87.33±2.62 b | 0.31±0.70 b |
M4 | 83.76±2.47 b | 0.15±0.40 bd |
M5 | 64.80±1.47 bc | 0.09±0.70 bc |
M6 | 77.93±3.93 b | 0.20±0.08 b |
M7 | 72.67±9.53 bc | 0.19±0.02 bc |
M8 | 81.76±2.68 b | 0.21±0.09 b |
M9 | 70.53±3.45 bc | 0.27±0.05 bc |
M10 | 78.76±2.78 b | 0.27±0.05 b |
M11 | 78.76±3.21 b | 0.32±0.17 b |
M12 | 90.60±2.30 ab | 0.37±0.13 b |
M13 | 53.06±9.69 bcd | 0.02±0.03 bcd |
M14 | 73.87±5.53 b | 0.03±0.05 bcd |
M15 | 50.33±5.44 bcd | 0.07±0.10 bcd |
M16 | 75.77±5.86 b | 0.03±0.05 bc |
Figure 2 The flat floret regeneration phase for leaves in Chrysanthemum vestitum From left to right are leaves that had just been added to the differentiation medium (0 d), leaf blades with swollen edges (7 d), leaf-induced calli (15 d), adventitious points (30 d), adventitious buds up to 0.5 cm (45 d), and adventitious buds inserted into the rooting medium for 10 days, respectively. Bar=1 cm
Figure 3 Regeneration of transverse thin cell layers (tTCLs) and leaves of Chrysanthemum vestitum with a flat floret (A)-(D) Regeneration system of tTCLs in differentiation media for 7, 15, 20, and 35 days; (E)-(G) Regeneration system of leaves in differentiation media for 7, 15, and 20 days; (H) Plant status of regeneration buds from leaves after 15 days transplanting into a rooting medium. Bars=1 cm
No. | Rooting rate (%) | Number of roots | Average root length (cm) | Average plant height (cm) |
---|---|---|---|---|
R1 | 79.17 | 2.21±1.15 a | 4.11±2.16 b | 3.05±0.72 a |
R2 | 100.00 | 1.96±1.54 a | 7.65±3.24 a | 3.16±1.01 a |
R3 | 95.83 | 2.04±2.26 a | 4.37±1.80 b | 2.60±1.26 b |
Table 6 Rooting and plant status of Chrysanthemum vestitum with a flat floret in different rooting medium
No. | Rooting rate (%) | Number of roots | Average root length (cm) | Average plant height (cm) |
---|---|---|---|---|
R1 | 79.17 | 2.21±1.15 a | 4.11±2.16 b | 3.05±0.72 a |
R2 | 100.00 | 1.96±1.54 a | 7.65±3.24 a | 3.16±1.01 a |
R3 | 95.83 | 2.04±2.26 a | 4.37±1.80 b | 2.60±1.26 b |
Figure 4 Rooting status of regenerated seedlings from Chrysanthemum vestitum with a flat floret in R1 (A), R2 (B), and R3 (C) media for 15 days R1-R3 are the same as shown in Table 3. Bars=1 cm
Floret form | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient | Rooting rate (%) |
---|---|---|---|---|
Flat | 100.00±0.00 | 100.00±2.05 | 3.59±2.46 | 100.00 |
Tubular | 100.00±0.00 | 83.46±6.59 | 1.75±0.25 | 100.00 |
Mix | 100.00±0.00 | 91.67±2.87 | 4.34±2.34 | 100.00 |
Table 7 Leaf regeneration systems of Chrysanthemum vesititum with three floret forms
Floret form | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient | Rooting rate (%) |
---|---|---|---|---|
Flat | 100.00±0.00 | 100.00±2.05 | 3.59±2.46 | 100.00 |
Tubular | 100.00±0.00 | 83.46±6.59 | 1.75±0.25 | 100.00 |
Mix | 100.00±0.00 | 91.67±2.87 | 4.34±2.34 | 100.00 |
Figure 5 The regeneration phase of leaf of Chrysanthemum vesititum in the presence of tubular and mixed floret forms (A) The regeneration phase of leaves by tubular floret forms; (B) The regeneration phase of leaves by mixed floret forms. From left to right are leaves that had just been added to the differentiation medium (0 d), leaf blades with swollen edges (7 d), leaf-induced calli (15 d), adventitious points (30 d), adventitious buds up to 0.5 cm (45 d), and adventitious buds inserted into the rooting medium for 10 days, respectively. Bars=1 cm
Figure 6 Capitula of wild-type plants and regenerated plants of Chrysanthemum vestitum with three floret forms (A1)-(A3) Capitula of wild-type strains with flat, tubular and mixed floret forms; (B1)-(B3) Capitula of regenerated plants with flat, tubular and mixed floret forms. Bars=1 cm
[1] |
Annadana S, Rademaker W, Ramanna M, Udayakumar M, de Jong J (2000). Response of stem explants to screening and explant source as a basis for methodical advancing of regeneration protocols for chrysanthemum. Plant Cell Tissue Organ Cult 62, 47-55.
DOI URL |
[2] |
Aswath CR, Mo SY, Kim SH, Kim DH (2004). IbMADS 4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendrathema grandiflora (Ramat.) Kitamura). Plant Sci 166, 847-854.
DOI URL |
[3] |
Chakrabarty D, Mandal AKA, Datta SK (1999). Management of chimera through direct shoot regeneration from florets of chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotechnol 74, 293-296.
DOI URL |
[4] | Chen H, Mo LW, Wang ZF, Wang YC, Chen YZ, Zhang W, Song XQ, Meng XY (2023). Establishment of tissue culture and plant regeneration system of ‘Zhenfen’ Chrysanthemum morifolium. Mol Plant Breed 21, 1633-1640. (in Chinese) |
陈好, 莫丽文, 王泽峰, 王亚沉, 陈英转, 张雯, 宋希强, 孟新亚 (2023). 地被菊花‘珍粉’组织培养与植株再生体系的建立. 分子植物育种 21, 1633-1640. | |
[5] | Chen H, Wang YF, Chen SM, Liu SY, Teng NJ, Lan W, Chen FD (2009). Study on tissue culture of five wild species closely related to Dendranthema × grandiflorum. J Nanjing Agric Univ 32, 30-35. (in Chinese) |
晨卉, 王艳芳, 陈素梅, 刘思余, 滕年军, 兰伟, 陈发棣 (2009). 五种菊花近缘植物组织培养研究. 南京农业大学学报 32, 30-35. | |
[6] | Chen PY (2010). Study on Regeneration of Chrysanthemum koraiense Nakai. Master’s thesis. Dalian: Liaoning Normal University. pp. 17-28. (in Chinese) |
陈鹏彦 (2010). 朝鲜野菊再生系统建立的研究. 硕士论文. 大连: 辽宁师范大学. pp. 17-28. | |
[7] | Dai SL, Chen JY (1997). A cladistic study on some Dendranthema spp. in China. Wuhan Bot Res J 15, 27-34. (in Chinese) |
戴思兰, 陈俊愉 (1997). 中国菊属一些种的分支分类学研究. 武汉植物学研究 15, 27-34. | |
[8] | Dai SL, Chen JY, Li WB (1998). Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Bot Sin 40, 1053-1059. (in Chinese) |
戴思兰, 陈俊愉, 李文彬 (1998). 菊花起源的RAPD分析. 植物学报 40, 1053-1059. | |
[9] | Dai SL, Wang WK, Huang JP (2002). Advances of researches on phylogeny of Dendranthema and origin of chrysanthemum. J Beijing For Univ 24(5), 230-234. (in Chinese) |
戴思兰, 王文奎, 黄家平 (2002). 菊属系统学及菊花起源的研究进展. 北京林业大学学报 24(5), 230-234. | |
[10] | Dai SL, Zhong Y, Zhang XY (1995). Study on numerical taxonomy of some Chinese species of Dendranthema (DC) Des Moul. J Beijing For Univ 17(4), 9-15. (in Chinese) |
戴思兰, 钟扬, 张晓艳 (1995). 中国菊属植物部分种的数量分类研究. 北京林业大学学报 17(4), 9-15. | |
[11] | Ding XX (2018). Study progress of tissue culture regeneration system of chrysanthemum. J Liaoning For Sci Tech (4), 64-65, 68. (in Chinese) |
丁晓霞 (2018). 菊花组培再生体系研究进展. 辽宁林业科技 (4), 64-65, 68. | |
[12] | Editorial Committee of the Floral of China, Chinese Academy of Sciences(1983). Floral of China, Vol. 76. Beijing: Science Press. pp. 29-42. (in Chinese) |
中国科学院中国植物志编辑委员会(1983). 中国植物志, 第76卷. 北京: 科学出版社. pp. 29-42. | |
[13] | Fan GX (2017). Transcriptome Analysis of Ray Floret Variation in Chrysanthemum vestitum. Master’s thesis. Beijing: Beijing Forestry University. pp. 20-21. (in Chinese) |
樊光迅 (2017). 毛华菊舌状花形态变异的转录组分析. 硕士论文. 北京: 北京林业大学. pp. 20-21. | |
[14] | Fan GX, Qi S, Wang WK, Dai SL (2016). Mathematical analysis of morphological traits of Chrysanthemum vestitum. Advances in Ornamental Horticulture of China 2016. Changsha: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 134-141. (in Chinese) |
樊光迅, 亓帅, 王文奎, 戴思兰 (2016). 毛华菊形态性状变异的数学分析. 中国观赏园艺研究进展2016. 长沙: 中国园艺学会观赏园艺专业委员会. pp. 134-141. | |
[15] | Fu JX, Zhao C, Wang Y, Dai SL (2012). Establishing an in vitro regeneration system from hypocotyls of Chrysanthemum lavandulifolium. J Beijing For Univ 34(3), 91-96. (in Chinese) |
付建新, 张超, 王翊, 戴思兰 (2012). 甘菊下胚轴离体再生体系的建立. 北京林业大学学报 34(3), 91-96. | |
[16] | Gao YK, Zhao B, Ding GX, Zhang QX (2001). Shoot regeneration from stem and leaf explant of Dendrathema grandiflorum. J Beijing For Univ 23, 32-33. (in Chinese) |
高亦珂, 赵勃, 丁国勋, 张启翔 (2001). 菊花茎叶外植体再生体系的研究. 北京林业大学学报 23, 32-33. | |
[17] | Han KT, Wang J, Dai SL (2009). Adventitious shoot regeneration from internode transverse thin cell layers of cut spray chrysanthemum. J Beijing For Univ 31, 102-107. (in Chinese) |
韩科厅, 王娟, 戴思兰 (2009). 多头切花菊横切薄层不定芽再生的研究. 北京林业大学学报 31, 102-107. | |
[18] | Hill GP (1968). Shoot formation in tissue cultures of Chrysanthemum ‘Bronze Pride’. Physiol Plant 21, 386-389. |
[19] |
Kaul V, Miller RM, Hutchinson JF, Richards D (1990). Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn.Chrysanthemum morifolium Ramat.). Plant Cell Tissue Organ Cult 21, 21-30.
DOI URL |
[20] |
Ledger SE, Deroles SC, Given NK (1991). Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep 10, 195-199.
DOI PMID |
[21] | Li YJ, Li Y, Huang H, Dai SL (2018). Establishment of an efficient regeneration system for the cut flower Chrysanthemum ‘Fenguiren’. Advances in Ornamental Horticulture of China 2018. Harbin: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 427-434. (in Chinese) |
李亚军, 李悦, 黄河, 戴思兰 (2018). 切花菊‘粉贵人’高效再生体系的建立. 中国观赏园艺研究进展2018. 哈尔滨: 中国园艺学会观赏园艺专业委员会. pp. 427-434. | |
[22] | Liao ML, Pu Y, Wu XY, Ma CF, Wang WK, Dai SL (2023). Establishment of regeneration system of Chrysanthemum indicum in Pingtan with various ligulate floret forms. Chin Bull Bot 58, 449-460. (in Chinese) |
廖敏凌, 蒲娅, 武晓云, 马朝峰, 王文奎, 戴思兰 (2023). 平潭野菊混合瓣型株系再生体系的建立. 植物学报 58, 449-460. | |
[23] | Liu QQ, Dai SL (2007). Application of cytology methods on researches on chrysanthemum origin and Dendranthema spp. evolution. Nonwood For Res 25(3), 86-89. (in Chinese) |
刘倩倩, 戴思兰 (2007). 细胞学在探讨菊花起源与菊属植物进化中的应用. 经济林研究 25(3), 86-89. | |
[24] | Liu YT, Huang H, Ye F, Dai SL (2018). The construction of regeneration system for hypocotyl of Senecio cruentus. Advances in Ornamental Horticulture of China 2018. Harbin: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 493-501. (in Chinese) |
刘钰婷, 黄河, 叶繁, 戴思兰 (2018). 瓜叶菊下胚轴再生体系的建立. 中国观赏园艺研究进展2018. 哈尔滨: 中国园艺学会观赏园艺专业委员会. pp. 493-501. | |
[25] | Luo H, Wen XH, Zhou YY, Dai SL (2020). Establishment of in vitro regeneration system of Helenium aromaticum. Chin Bull Bot 55, 318-328. (in Chinese) |
罗虹, 温小蕙, 周圆圆, 戴思兰 (2020). 芳香堆心菊离体再生体系的建立. 植物学报 55, 318-328.
DOI |
|
[26] | Luo YL, Huang H, Lian L, Dai SL (2017). The construction of regeneration system for the ray floret of Senecio cruentus. Advances in Ornamental Horticulture of China 2017. Chengdu: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 252-259. (in Chinese) |
罗怡柳, 黄河, 连璐, 戴思兰 (2017). 瓜叶菊舌状花再生体系的建立. 中国观赏园艺研究进展2017. 成都: 中国园艺学会观赏园艺专业委员会. pp. 252-259. | |
[27] |
Ma YP, Chen MM, Wei JX, Zhao L, Liu PL, Dai SL, Wen J (2016). Origin of Chrysanthemum cultivars—evidence from nuclear low-copy LFY gene sequences. Biochem Syst Ecol 65, 129-136.
DOI URL |
[28] |
Ma YP, Zhao L, Zhang WJ, Zhang YH, Xing X, Duan XX, Hu J, Harris A, Liu PL, Dai SL, Wen J (2020). Origins of cultivars of Chrysanthemum—evidence from the chloroplast genome and nuclear LFY gene. J Syst Evol 58, 925-944.
DOI URL |
[29] | Mao HY, Zhou Y, Liu D, Jia HM (2015). Establishment of receptor and genetic transformation system of ground- cover chrysanthemum ‘China Red’. J Shenyang Agric Univ 46, 672-677. (in Chinese) |
毛洪玉, 周杨, 刘迪, 贾红梅 (2015). 地被菊‘中国红’再生及遗传转化体系的建立. 沈阳农业大学学报 46, 672-677. | |
[30] | Pu Y (2023). Molecular Mechanism of Auxin Regulation on Morphological Difference of Ray Florets in Chrysanthemum vestitum. Doctoral dissertation. Beijing: Beijing Forestry University. pp. 17-23. (in Chinese) |
蒲娅 (2023). 生长素调控毛华菊舌状花形态差异的分子机制. 博士论文. 北京: 北京林业大学. pp. 17-23. | |
[31] |
Pu Y, Huang H, Wen XH, Lu CF, Zhang BH, Gu XQ, Qi S, Fan GX, Wang WK, Dai SL (2020). Comprehensive transcriptomic analysis provides new insights into the mechanism of ray floret morphogenesis in chrysanthemum. BMC Genomics 21, 728.
DOI PMID |
[32] |
Pu Y, Liao ML, Li JZ, Tian YK, Wang ZM, Song X, Dai SL (2023). Floral development stage-specific transcriptomic analysis reveals the formation mechanism of different shapes of ray florets in chrysanthemum. Genes 14, 766.
DOI URL |
[33] | Ren JS, Gu XQ, Pu Y, Huang H (2021). Establishment of regeneration system for the ray floret of Chrysanthemum indicum var. huludoensis. Mod Hortic 44(24), 3-4, 7. (in Chinese) |
任江珊, 顾雪琪, 蒲娅, 黄河 (2021). 葫芦岛野菊舌状花再生体系建立. 现代园艺 44(24), 3-4, 7. | |
[34] |
Renou JP, Brochard P, Jalouzot R (1993). Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci 89, 185-197.
DOI URL |
[35] |
Rout GR, Das P (1997). Recent trends in the biotechnology of Chrysanthemum: a critical review. Sci Hortic 69, 239-257.
DOI URL |
[36] |
Song XB, Gao K, Fan GX, Zhao XG, Liu ZL, Dai SL (2018). Quantitative classification of the morphological traits of ray florets in large-flowered chrysanthemum. HortScience 53, 1258-1265.
DOI URL |
[37] | Song XB, Xu YH, Gao K, Fan GX, Zhang F, Deng CY, Dai SL, Huang H, Xin HG, Li YY (2020). High-density genetic map construction and identification of loci controlling flower-type traits in chrysanthemum (Chrysanthemum × morifolium Ramat.). Hortic Res 7, 108. |
[38] |
Tanaka K, Kanno Y, Kudo S, Suzuki M (2000). Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep 19, 946-953.
DOI PMID |
[39] | Tang ZH (1963). A study of the classification of Chinese chrysanthemums. Acta Hortic 2, 411-420. (in Chinese) |
汤忠皓 (1963). 中国菊花品种分类的探讨. 园艺学报 2, 411-420. | |
[40] |
Teixeira da Silva JA (2003). Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum. Plant Growth Regul 39, 67-76.
DOI URL |
[41] | Wang WK, Zhou CL, Dai SL (1999). Flower morphological variation of Dendranthema vestitum. J Beijing For Univ 21(3), 92-95. (in Chinese) |
王文奎, 周春玲, 戴思兰 (1999). 毛华菊花朵形态变异. 北京林业大学学报 21(3), 92-95. | |
[42] | Wang ZB, Mo GX, Luo HL, Zhang DY (2015). Research of tissue culture and regenerated of the different explants of Chrysanthemum indicum L. North Hortic (18), 106-109. (in Chinese) |
王自布, 莫国秀, 罗会兰, 张德英 (2015). 菊花不同外植体组培快繁及其再生体系的研究. 北方园艺 (18), 106-109. | |
[43] | Wu XY, Wen XH, Ma CF, Dai SL (2018). Rapid induction of plant regeneration from leaf of Chrysanthemum lanvandulifolium. Advances in Ornamental Horticulture of China 2018. Harbin: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 461-468. (in Chinese) |
武晓云, 温小蕙, 马朝峰, 戴思兰 (2018). 快速诱导甘菊叶片再生植株的方法. 中国观赏园艺研究进展2018. 哈尔滨: 中国园艺学会观赏园艺专业委员会. pp. 461-468. | |
[44] | Wu ZP, Gao YK, Fan M, Gao YH (2020). Construction of regeneration and transformation system of Chrysanthemum ‘Jinbudiao’. Mol Plant Breed 18, 150-158. (in Chinese) |
吴志苹, 高亦珂, 范敏, 高耀辉 (2020). 菊花‘金不凋’再生及遗传转化体系的构建. 分子植物育种 18, 150-158. | |
[45] | Xu YX (2005). Analysis on Morphological Diversity and Classification of Chrysanthemum. Master’s thesis. Beijing: Beijing Forestry University. pp. 23-36. (in Chinese) |
许莹修 (2005). 菊花形态性状多样性和品种分类的研究. 硕士论文. 北京: 北京林业大学. pp. 23-36. | |
[46] |
Yepes LM, Mittak V, Pang SZ, Gonsalves C, Slightom JL, Gonsalves D (1995). Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Rep 14, 694-698.
DOI PMID |
[47] | Zhang SL (1965). Studies on the classification of garden varieties of florist’s chrysanthemum. Acta Hortic 4, 35-46, 61-62. |
张树林 (1965). 菊花品种分类的研究. 园艺学报 4, 35-46, 61-62. | |
[48] | Zhou J (2009). Studies on the Problem of Origin of Chinese Garden Chrysanthemum. Doctoral dissertation. Beijing: Beijing Forestry University. pp. 31-36, 109-113. |
周杰 (2009). 关于中国菊花起源问题的若干实验研究. 博士论文. 北京: 北京林业大学. pp. 31-36, 109-113. |
[1] | Chen xianglei Shu-Juan CUI 赵 晨军 Hongliang Gu chen xiaoping Jun Sun. Predictive Model of Single Leaf Area for Woody Plants Based on Leaf Morphology Classification [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[3] | Yanpeng Li, Lijun Pan, Jie Chen, Han Xu, Lixin Yang. Response and influencing factors of leaf functional traits to forest succession in subtropical mixed plantations [J]. Biodiv Sci, 2024, 32(7): 24049-. |
[4] | PENG Zhong-Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variations and relationships of three Acer species in different tree sizes and canopy conditions in Xiao Hinggan Mountains of Northeast China [J]. Chin J Plant Ecol, 2024, 48(6): 730-743. |
[5] | Wenli Yang, Zhao Li, Zhiming Liu, Zhihua Zhang, Jinsheng Yang, Yanjie Lü, Yongjun Wang. Senescence Characteristics of Maize Leaves at Different Maturity Stages and Their Effect on Interleaf Bacteria [J]. Chinese Bulletin of Botany, 2024, 59(6): 0-0. |
[6] | Liu Yuze, Wang Yifei, Ren Weizhen, Li Hao, Lu Bin, Lu Bingshe, Yu Xiaoyue. Establishment of Immature Embryo Rescue and Regeneration System for Pyrus calleryana cv. ‘Cleveland’ [J]. Chinese Bulletin of Botany, 2024, 59(5): 800-809. |
[7] | Chen Tingxin, Fu Min, Li Na, Yang Leilei, Li Lingfei, Zhong Chunmei. Identification and Expression Analysis of DNA Methyltransferase in Begonia masoniana [J]. Chinese Bulletin of Botany, 2024, 59(5): 726-737. |
[8] | Jiali Yang, Yufei Rao, Runhua Zhang, Guolin Zhou, Chufa Lin, Yanhong He, Guogui Ning. Establishment of an Efficient Leaf Regeneration System for Pinguicula [J]. Chinese Bulletin of Botany, 2024, 59(4): 626-634. |
[9] | Hao Zeng, Peifang Li, Zhihui Guo, Chunlin Liu, Ying Ruan. Establishment of a Regeneration System for Lunaria annua [J]. Chinese Bulletin of Botany, 2024, 59(3): 433-440. |
[10] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[11] | FAN Hong-Kun, ZENG Tao, JIN Guang-Ze, LIU Zhi-Li. Leaf trait variation and trade-offs among growth types of broadleaf plants in Xiao Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 364-376. |
[12] | Jiahang Che, Weinan Li, Yingzhi Qin, Jinhuan Chen. Research Progress of Leaf Color Variation Mechanism in Woody Plants [J]. Chinese Bulletin of Botany, 2024, 59(2): 319-328. |
[13] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[14] | Bao Zhu, Jiangzhe Zhao, Kewei Zhang, Peng Huang. OsCKX9 is Involved in Regulating the Rice Lamina Joint Development and Leaf Angle [J]. Chinese Bulletin of Botany, 2024, 59(1): 10-21. |
[15] | Yanli Fang, Chuanyu Tian, Ruyi Su, Yapei Liu, Chunlian Wang, Xifeng Chen, Wei Guo, Zhiyuan Ji. Mining and Preliminary Mapping of Rice Resistance Genes Against Bacterial Leaf Streak [J]. Chinese Bulletin of Botany, 2024, 59(1): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||