Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (2): 185-193.DOI: 10.11983/CBB19013
Special Issue: 逆境生物学专辑
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Lulu Li,Wenchao Yin,Mei Niu,Wenjing Meng,Xiaoxing Zhang,Hongning Tong()
Received:
2019-01-18
Accepted:
2019-03-19
Online:
2019-03-10
Published:
2019-09-01
Contact:
Hongning Tong
Lulu Li,Wenchao Yin,Mei Niu,Wenjing Meng,Xiaoxing Zhang,Hongning Tong. Functional Analysis of Brassinosteroids in Salt Stress Responses in Rice[J]. Chinese Bulletin of Botany, 2019, 54(2): 185-193.
Figure 1 Time-course expression of BR synthetic genes in rice following salt or ABA treatment(A) D2 expression after NaCl treatment; (B) D11 expression after NaCl treatment; (C) D2 expression after ABA treatment; (D) D11 expression after ABA treatment. * P<0.05; *** P<0.001
Figure 2 Survival rate of rice BR defective mutants and the wild type under salt stress(A) Growth status of d2-2 mutant and the wild type after salt treatment; (B) Statistic data of the survival rate of d2-2 and the wild type after salt treatment; (C) Growth status of d61-1 mutant and the wild type after salt treatment; (D) Statistic data of the survival rate of d61-1 and the wild type after salt treatment. ** P<0.01
Figure 3 Effects of BR and salt stress on OsBZR1 proteins in rice(A) Effect of BR treatment on OsBZR1 proteins; (B) Effect of salt treatment on OsBZR1 proteins
Figure 4 Co-regulation analyses of BR-, ABA- and NaCl-regulated genes of rice(A) Co-regulated gene numbers between BR-, ABA- and NaCl-regulated different expression genes (DEGs); (B) Co-regulation analyses among BR-upregulated (BR-UP), BR-downregulated (BR-DN), NaCl-upregulated (NaCl-UP) and NaCl-downregulated (NaCl-DN) genes. Distribution of the gene numbers was indicated.
Figure 5 Gene Ontology analyses of the 189 BR-NaCl co-regulated genes of rice(A) GO analyses in term of the biological process; (B) GO analyses in terms of biological process, cellular component, and molecular function
[1] | 李钱峰, 鲁军, 余佳雯, 张昌泉, 刘巧泉 ( 2018). 油菜素内酯与脱落酸互作调控植物生长与抗逆的分子机制研究进展. 植物生理学报 54, 370-378. |
[2] | 王沛雅, 周剑平, 王治业, 张军, 强维亚, 杨涛, 郭琪, 杨晖 ( 2014). 油菜素内酯合成酶基因DAS5促进杨树生长及提高抗旱性的作用. 植物学报 49, 407-416. |
[3] | 吴家富, 杨博文, 向珣朝, 许亮, 颜李梅 ( 2017). 不同水稻种质在不同生育期耐盐鉴定的差异. 植物学报 52, 77-88. |
[4] | 俞仁培, 陈德明 ( 1999). 我国盐渍土资源及其开发利用. 土壤通报 30, 158-159. |
[5] |
Choe S ( 2006). Brassinosteroid biosynthesis and inactiva- tion. Physiol Plant 126, 539-548.
DOI URL |
[6] |
Divi UK, Krishna P ( 2009). Brassinosteroid: a biotechno- logical target for enhancing crop yield and stress tole- rance. N Biotechnol 26, 131-136.
DOI URL |
[7] | Feng Y, Yin YH, Fei SZ ( 2015). Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachy- podium distachyon. Plant Sci 234, 163-173. |
[8] | Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD Jr, Steffens GL, Flippen- Anderson JL, Cook JC Jr ( 1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281, 216-217. |
[9] |
Ha YM, Shang Y, Nam KH ( 2016). Brassinosteroids modu- late ABA-induced stomatal closure in Arabidopsis. J Exp Bot 67, 6297-6308.
DOI URL |
[10] |
He JX, Gendron JM, Sun Y, Gampala SSL, Gendron N, Sun CQ, Wang ZY ( 2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634-1638.
DOI URL |
[11] |
He JX, Gendron JM, Yang YL, Li JM, Wang ZY ( 2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc Natl Acad Sci USA 99, 10185-10190.
DOI URL |
[12] |
Hong Z, Ueguchi-Tanaka M, Matsuoka M ( 2004). Bras- sinosteroids and rice architecture. J Pestic Sci 29, 184-188.
DOI URL |
[13] | Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M ( 2003). A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15, 2900-2910. |
[14] |
Khripach V, Zhabinskii V, De Groot A ( 2000). Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86, 441-447.
DOI URL |
[15] |
Kim TW, Wang ZY ( 2010). Brassinosteroid signal transduc- tion from receptor kinases to transcription factors. Annu Rev Plant Biol 61, 681-704.
DOI URL |
[16] | Krishna P, Prasad BD, Rahman T ( 2017). Brassinosteroid action in plant abiotic stress tolerance. In: Russinova E, Caño-Delgado AI, eds. Brassinosteroids. New York: Hum- ana Press. pp. 193-202. |
[17] |
Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M ( 2006). Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141, 924-931.
DOI URL |
[18] |
Nakashima K, Yamaguchi-Shinozaki K ( 2013). ABA signaling in stress-response and seed development. Plant Cell Rep 32, 959-970.
DOI URL |
[19] | Nolan TM, Brennan B, Yang MR, Chen JN, Zhang MC, Li ZH, Wang XL, Bassham DC, Walley J, Yin YH ( 2017). Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev Cell 41, 33-46.e7. |
[20] |
Peleg Z, Blumwald E ( 2011). Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14, 290-295.
DOI URL |
[21] |
Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I ( 2007). Nucleocytoplasmic shuttling of BZR1 mediated by phos- phorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19, 2749-2762.
DOI URL |
[22] |
Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M ( 2006). Erect leaves caused by brassinosteroid deficiency inc- rease biomass production and grain yield in rice. Nat Bio- technol 24, 105-109.
DOI |
[23] |
Singh AP, Savaldi-Goldstein S ( 2015). Growth control: brassinosteroid activity gets context. J Exp Bot 66, 1123-1132.
DOI URL |
[24] |
Sun Y, Fan XY, Cao DM, Tang WQ, He K, Zhu JY, He JX, Bai MY, Zhu SW, Oh E, Patil S, Kim TW, Ji HK, Wong WH, Rhee SY, Wang ZY ( 2010). Integration of bras- sinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19, 765-777.
DOI URL |
[25] | Tong HN, Chu CC ( 2016). Reply: brassinosteroid regulates gibberellin synthesis to promote cell elongation in rice: critical comments on ross and quittenden's letter. Plant Cell 28, 833-835. |
[26] | Tong HN, Chu CC ( 2018). Functional specificities of bras- sinosteroid and potential utilization for crop improvement. Trends Plant Sci 23, 1016-1028. |
[27] |
Tong HN, Liu LC, Jin Y, Du L, Yin YH, Qian Q, Zhu LH, Chu CC ( 2012). DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24, 2562-2577.
DOI URL |
[28] |
Tong HN, Xiao YH, Liu DP, Gao SP, Liu LC, Yin YH, Jin Y, Qian Q, Chu CC ( 2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26, 4376-4393.
DOI URL |
[29] |
Wang ZY, Nakano T, Gendron J, He JX, Chen M, Vafeados D, Yang YL, Fujioka S, Yoshida S, Asami T, Chory J ( 2002). Nuclear-localized BZR1 mediates bras- sinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev Cell 2, 505-513.
DOI URL |
[30] |
Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang JL, Wan JM, Zhai HQ, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI ( 2008). Brassinosteroids regulate grain filling in rice. Plant Cell 20, 2130-2145.
DOI URL |
[31] | Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M ( 2000). Loss of function of a rice brassinosteroid insensitive 1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591-1606. |
[32] | Yang MR, Li CX, Cai ZY, Hu YM, Nolan T, Yu FF, Yin YH, Xie Q, Tang GL, Wang XL ( 2017). SINAT E3 ligases control the light-mediated stability of the brassinosteroid- activated transcription factor BES1 in Arabidopsis. Dev Cell 41, 47-58.e4. |
[33] | Yin WC, Dong NN, Niu M, Zhang XX, Li LL, Liu J, Liu B, Tong HN ( 2018). Brassinosteroid-regulated plant growth and development and gene expression in soybean. Crop J. DOI: 10.1016/j.cj.2018.10.003. |
[34] |
Yin YH, Wang ZY, Mora-Garcia S, Li JM, Yoshida S, Asami T, Chory J ( 2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109, 181-191.
DOI URL |
[35] | Yu XF, Li L, Zola J, Aluru M, Ye HX, Foudree A, Guo HQ, Anderson S, Aluru S, Liu P, Rodermel S, Yin YH ( 2011). A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Ara- bidopsis thaliana . Plant J 65, 634-646. |
[36] |
Zhao X, Dou LR, Gong ZZ, Wang XF, Mao TL ( 2019). BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytol 221, 908-918.
DOI URL |
[37] | Zhu JK ( 2001). Plant salt tolerance. Trends Plant Sci 6, 66-71. |
[1] | Jiangyuan Shang, Yan Chun, Xueyong Li. Map-based Cloning and Natural Variation Analysis of the PAL3 Gene Controlling Panicle Length in Rice [J]. Chinese Bulletin of Botany, 2021, 56(5): 520-532. |
[2] | Jian-Min Zhou. A Ca2+-ROS Signaling Axis in Rice Provides Clues to Rice-pathogen Coevolution and Crop Improvements [J]. Chinese Bulletin of Botany, 2021, 56(5): 513-515. |
[3] | Yigong Zhang, Yi Zhang, Ayibaiheremu Mutailifu, Daoyuan Zhang. Heterologous Overexpression of Desiccation-tolerance Moss ScABI3 Gene Changes Stomatal Phenotype and Improves Drought Resistance in Transgenic Arabidopsis [J]. Chinese Bulletin of Botany, 2021, 56(4): 414-421. |
[4] | Sanhe Li, Kai Liu, Wenjun Zha, Huashan Xu, Peide Li, Lei Zhou, Aiqing You. Effects of transgenic rice H23 with BPH9 and Bar genes resistant to brown planthopper and herbicide on non-target organisms [J]. Biodiv Sci, 2021, 29(4): 488-494. |
[5] | Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao, Haitao Hu. QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential [J]. Chinese Bulletin of Botany, 2021, 56(3): 275-283. |
[6] | Jiaxin Li, Xia Li, Yinfeng Xie. Mechanism on Drought Tolerance Enhanced by Exogenous Trehalose in C4-PEPC Rice [J]. Chinese Bulletin of Botany, 2021, 56(3): 296-314. |
[7] | Jianhua Jiang, Xiaojing Dang, Wenhao Yao, Mengzhu Hu, Yuting Wang, Changmin Hu, Ying Zhang, Dezheng Wang. Genetic Analysis of Four Stigma Traits with Genic Male Sterile Line in Rice (Oryza sativa) [J]. Chinese Bulletin of Botany, 2021, 56(3): 284-295. |
[8] | Lubin Tan, Chuanqing Sun. Rapid Domestication of Wild Allotetraploid Rice: Starting a New Era of Human Agricultural Civilization [J]. Chinese Bulletin of Botany, 2021, 56(2): 134-137. |
[9] | Qilu Yu, Jiangzhe Zhao, Xiaoxian Zhu, Kewei Zhang. Regulation of Rice Growth by Root-secreted Phytohormones [J]. Chinese Bulletin of Botany, 2021, 56(2): 175-182. |
[10] | Wei Xuan, Guohua Xu. Genomic Basis of Rice Adaptation to Soil Nitrogen Status [J]. Chinese Bulletin of Botany, 2021, 56(1): 1-5. |
[11] | Chenyang Pan, Hanfei Ye, Weiyong Zhou, Sheng Wang, Mengjia Li, Mei Lu, Sanfeng Li, Xudong Zhu, Yuexing Wang, Yuchun Rao, Gaoxing Dai. QTL Mapping of Candidate Genes Involved in Cd Accumulation in Rice Grain [J]. Chinese Bulletin of Botany, 2021, 56(1): 25-32. |
[12] | Sunlu Chen, Chengfang Zhan, Hong Jiang, Linhan Li, Hongsheng Zhang. Advances in the Molecular Mechanism and Genetic Regulation of Grain-filling Rate in Rice [J]. Chinese Bulletin of Botany, 2021, 56(1): 80-89. |
[13] | Ningxi Song, Yingfeng Xie, Xia Li. Effects of Epigenetic Mechanisms on C4 Phosphoenolpyruvate Carboxylase Transgenic Rice (Oryza sativa) Seed Germination Under Drought Stress [J]. Chinese Bulletin of Botany, 2020, 55(6): 677-692. |
[14] | Min He, Junjie Yin, Zhiming Feng, Xiaobo Zhu, Jianhua Zhao, Shimin Zuo, Xuewei Chen. Methods for Evaluation of Rice Resistance to Blast and Sheath Blight Diseases [J]. Chinese Bulletin of Botany, 2020, 55(5): 577-587. |
[15] | Jian-Min Zhou, Lidong Cao. Antifungal Compounds Come in Handy [J]. Chinese Bulletin of Botany, 2020, 55(5): 533-536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||