植物学报 ›› 2025, Vol. 60 ›› Issue (2): 186-203.DOI: 10.11983/CBB24101 cstr: 32102.14.CBB24101
樊蓓1, 任敏1, 王延峰1,2, 党峰峰1,2, 陈国梁1,2, 程国亭1,2, 杨金雨1, 孙会茹1,2,*()
收稿日期:
2024-07-08
接受日期:
2024-10-14
出版日期:
2025-03-10
发布日期:
2024-10-16
通讯作者:
孙会茹
基金资助:
Bei Fan1, Min Ren1, Yanfeng Wang1,2, Fengfeng Dang1,2, Guoliang Chen1,2, Guoting Cheng1,2, Jinyu Yang1, Huiru Sun1,2,*()
Received:
2024-07-08
Accepted:
2024-10-14
Online:
2025-03-10
Published:
2024-10-16
Contact:
Huiru Sun
摘要: 番茄(Solanum lycopersicum)在生长发育过程中常受到低温和干旱等多种非生物胁迫的影响。WRKY转录因子参与调控植物多种非生物胁迫响应过程, 而SlWRKY45在番茄非生物胁迫中的功能尚不清楚。基因表达分析发现, 低温、干旱和ABA处理均可显著诱导SlWRKY45的表达; 过表达SlWRKY45可提高番茄对干旱和低温的耐受性; 在干旱和低温处理下, 过表达株系的光合指标、抗氧化酶活性和脯氨酸(Pro)含量显著高于野生型(WT), 活性氧(ROS)和丙二醛(MDA)含量显著低于WT。转录组数据分析显示, SlWRKY45主要通过调控抗氧化酶活性和胁迫响应途径介导番茄对低温胁迫的响应。双荧光素酶报告基因检测发现, SlWRKY45可直接激活SlPOD1的表达。酵母双杂交(Y2H)和双分子荧光互补(BiFC)试验结果表明, SlWRKY45与SlWRKY46存在相互作用。综上表明, SlWRKY45可能通过直接调控抗氧化酶途径增强转基因番茄的抗逆性, 为番茄的遗传改良提供了重要的候选基因资源。
中图分类号:
樊蓓, 任敏, 王延峰, 党峰峰, 陈国梁, 程国亭, 杨金雨, 孙会茹. 番茄SlWRKY45转录因子在响应低温和干旱胁迫中的功能(长英文摘要). 植物学报, 2025, 60(2): 186-203.
Bei Fan, Min Ren, Yanfeng Wang, Fengfeng Dang, Guoliang Chen, Guoting Cheng, Jinyu Yang, Huiru Sun. Functions of SlWRKY45 in Response to Low-temperature and Drought Stress in Tomato. Chinese Bulletin of Botany, 2025, 60(2): 186-203.
图1 低温处理下SlWRKYs的表达热图(A)以及SlWRKY45在低温(B)、干旱(C)、脱落酸(ABA) (D)处理下和不同组织(E)中的表达 (B), (C), (D) SlWRKY45的相对表达量分别以4°C、ABA和PEG6000处理0小时为对照; (E) SlWRKY45的相对表达量以茎为对照。** 表示在P<0.01水平上差异显著。
Figure 1 Heat map of SlWRKYs under low-temperature treatment (A) and SlWRKY45 expression under 4°C (B), drought (C), and abscisic acid (ABA) (D) treatments and in different tissues (E) (B), (C), (D) The relative expression levels of SlWRKY45 at 0 h under treatments of 4°C, ABA and PEG6000 were utilized as controls, respectively; (E) The relative expression of SlWRKY45 in stems served as the control. ** represents significant differences at P<0.01.
图2 SlWRKY45的转录自激活 pGBKT7-53+pGADT7-T和pGBKT7空载质粒分别为阳性对照和阴性对照。
Figure 2 Transcriptional self-activation of SlWRKY45 pGBKT7-53+pGADT7-T and the empty vector pGBKT7 represent the positive control and negative control, respectively.
图3 干旱处理下SlWRKY45-OE转基因和WT番茄植株的表型(A)、光合指标(B)、DAB和NBT染色(C)及生理生化指标(D) (B), (D) **表示在P<0.01水平上差异显著。DAB: 二氨基联苯胺; NBT: 氮蓝四唑; WT: 野生型; SOD: 超氧化物歧化酶; POD: 过氧化物酶; MDA: 丙二醛; Pro: 脯氨酸. #1和#2为不同的转基因株系。Bars=1 cm
Figure 3 Phenotype (A), photosynthesis indicators (B), DAB, and NBT staining (C) and physiological indicators (D) of SlWRKY45-OE transgenic and WT tomato plants under drought treatment (B), (D) ** represent significant differences at P<0.01. DAB: Diaminobenzidine; NBT: Nitrotetrazolium blue chloride; WT: Wild type; SOD: Superoxide; POD: Peroxidase; MDA: Malondialdehyde; Pro: Proline. #1 and #2 are different transgenic lines. Bars=1 cm
图4 SlWRKY45-OE转基因和WT番茄植株在4°C处理下的表型(A)、光合指标(B)、DAB和NBT染色(C)及生理指标(D), (E) (B)-(E) *和**分别表示在P<0.05和P<0.01水平上差异显著。WT: 野生型。DAB、NBT、SOD、POD、MDA和Pro同图3。#1、#2为不同的转基因株系。Bars=1 cm
Figure 4 Phenotype (A), photosynthesis indicators (B), DAB, and NBT staining (C), and physiological indicators (D), (E) of SlWRKY45-OE transgenic and WT tomato plants under 4°C treatment (B)-(E) * and ** represent significant differences at P<0.05 and P<0.01, respectively. WT: Wild type. DAB, NBT, SOD, POD, MDA, and Pro are the same as shown in Figure 3. #1 and #2 are different transgenic lines. Bars=1 cm
图5 SlWRKY45-OE转基因番茄和WT在低温处理前后的RNA-seq分析 (A) 差异表达基因(DEGs)火山图(红色、蓝色和灰色分别代表上调、下调和无差异表达基因); (B) GO聚类(红色星号和线条标出的为显著富集的通路); (C) KEGG富集分析(红色星号和线条标出的为显著富集的通路); (D) 挑选的6个DEGs的表达热图; (E) 6个DEGs的相对表达量(以常温下WT为对照。**表示在P<0.01水平上差异显著。WT: 野生型。#1和#2为不同的转基因株系)
Figure 5 RNA-seq analysis of SlWRKY45-OE transgenic tomato and WT plants before and after low-temperature treatment (A) Volcano diagram of DEGs (red, blue and gray represent upregulated, downregulated and undifferentially expressed genes, respectively); (B) GO cluster (the red asterisks and lines indicate significantly enriched pathways); (C) KEGG enrichment (the red asterisks and lines indicate significantly enriched pathways); (D) The heatmap of 6 selected DEGs; (E) The relative expression of the 6 selected DEGs (the relative expression of WT under normal temperature was used as control. ** represent significant differences at P<0.01. WT: Wild type. #1 and #2 are different transgenic lines)
图6 双荧光素酶报告基因检测分析SlWRKY45对SlPOD1和SlPOD启动子的激活作用 (A) SlPOD1和SlPOD启动子序列分析(加粗下划线表示W-box-like和W-box元件); (B) 报告基因和效应基因的载体示意图; (C) LUC/REN分析(以62SK+SlPOD1 pro和62SK+SlPOD pro为对照组。**表示在P<0.01水平上差异显著)
Figure 6 Dual-luciferase reporter assays analysis of SlWRKY45 on SlPOD1 and SlPOD promoters activation (A) Sequence analysis of the SlPOD1 and SlPOD promoters (the bold underlines represent W-box-like and W-box elements); (B) Schematic representation of reporter and effector vectors; (C) LUC/REN analysis (62SK+SlPOD1 pro and 62SK+SlPOD pro are the control groups. ** represents significant differences at P<0.01)
图7 酵母双杂交(Y2H) (A)和双分子荧光互补(BiFC) (B)检测SlWRKY45与SlWRKY46的相互作用 (A) pGBKT7-53+pGADT7-T为阳性对照, pGBKT7+pGADT7-SlWRKY45和pGBKT7-SlWRKY46+pGADT7为阴性对照; (B) 图片从左到右依次为黄色荧光信号、明场和叠加, nYFP-SlWRKY45+cYFP和nYFP+SlWRKY46-cYFP为阴性对照。Bars=20 µm
Figure 7 Interaction of SlWRKY45 and SlWRKY46 via yeast two-hybrid (Y2H) (A) and bimolecular fluorescence complementation (BiFC) (B) (A) pGBKT7-53+pGADT7-T represents a positive control, pGBKT7+pGADT7-SlWRKY45 and pGBKT7-SlWRKY46+pGADT7 represent negative controls; (B) From left to right, the yellow fluorescent signal, bright field image and merge image are shown, nYFP-SlWRKY45+cYFP and nYFP+SlWRKY46-cYFP represent negative controls. Bars=20 µm
[1] | Ahammed GJ, Li X, Yang YX, Liu CC, Zhou GZ, Wan HJ, Cheng Y (2020). Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2-mediated stomatal closure. Environ Exp Bot 171, 103960. |
[2] | Baillo EH, Kimotho RN, Zhang ZB, Xu P (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10, 771. |
[3] |
Chen H, Lai ZB, Shi JW, Xiao Y, Chen ZX, Xu XP (2010). Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10, 281.
DOI PMID |
[4] | Chen N, Shao Q, Li XP (2023). Research progress on WRKY transcription factors and their biological function in tomato (Solanum lycopersicum L.). Jiangsu Agric Sci 51 (13), 6-17. (in Chinese) |
陈娜, 邵勤, 李晓鹏 (2023). 番茄WRKY转录因子功能的研究进展. 江苏农业科学 51(13), 6-17. | |
[5] | Chen QQ, Zhang H, Jiang JB, Li JF (2018). Partial WRKY genes expression under non-biological stress and analysis of SlWRKY50 gene silencing in tomato. J Northeast Agric Univ 49(7), 8-18. (in Chinese) |
陈青奇, 张红, 姜景彬, 李景富 (2018). 番茄部分WRKY基因非生物胁迫表达和SlWRKY50基因沉默分析. 东北农业大学学报 49(7), 8-18. | |
[6] | Dang FF, Lin JH, Li YJ, Jiang RY, Fang YD, Ding F, He SL, Wang YF (2023). SlWRKY30 and SlWRKY81 synergistically modulate tomato immunity to Ralstonia solanacearum by directly regulating SlPR-STH2. Hortic Res 10, uhad050. |
[7] | Dong QL, Tian Y, Zhang XM, Duan DY, Zhang H, Yang KY, Jia P, Luan HA, Guo SP, Qi GH, Mao K, Ma FW (2024). Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple. Hortic Plant J 10, 629-640. |
[8] | Dong QL, Zheng WQ, Duan DY, Huang D, Wang Q, Liu CH, Li C, Gong XQ, Li CY, Mao K, Ma FW (2020). MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings. Plant Sci 299, 110611. |
[9] |
Dong SC, Hong J, Ling JY, Xie ZX, Zhang SJ, Zhao LP, Song LX, Wang YL, Zhao TM (2024). Genome-wide association studies of drought tolerance in tomato. Acta Hortic Sin 51, 229-238. (in Chinese)
DOI |
董舒超, 洪骏, 凌嘉怡, 谢紫欣, 张胜军, 赵丽萍, 宋刘霞, 王银磊, 赵统敏 (2024). 番茄抗旱性的全基因组关联分析. 园艺学报 51, 229-238. | |
[10] | Gao YF, Liu JK, Yang FM, Zhang GY, Wang D, Zhang L, Qu YB, Yao YA (2020). The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum. Physiol Plant 168, 98-117. |
[11] |
Ge MM, Tang Y, Guan YJ, Lv MC, Zhou C, Ma HL, Lv JY (2024). TaWRKY31, a novel WRKY transcription factor in wheat, participates in regulation of plant drought stress tolerance. BMC Plant Biol 24, 27.
DOI PMID |
[12] |
Guo J, Liao MY, Jin Y, Ma XC, Zhang F, Lu XP, Deng ZN, Sheng L (2023). Functional analysis of transcription factor CsbHLH3 in regulating citric acid metabolism of citrus fruit. Acta Hortic Sin 50, 947-958. (in Chinese)
DOI |
郭静, 廖满余, 金燕, 马小川, 张芬, 卢晓鹏, 邓子牛, 盛玲 (2023). 柑橘转录因子CsbHLH3调控柠檬酸代谢的功能解析. 园艺学报 50, 947-958.
DOI |
|
[13] | Guo MY, Yang FJ, Liu CX, Zou JP, Qi ZY, Fotopoulos V, Lu G, Yu JQ, Zhou J (2022). A single-nucleotide polymorphism in WRKY33 promoter is associated with the cold sensitivity in cultivated tomato. New Phytol 236, 989-1005. |
[14] | Hou YY, Liu Y, Zhao LY, Zhao YQ, Wu ZG, Zheng YH, Jin P (2023). EjCML19 and EjWRKY7 synergistically function in calcium chloride-alleviated chilling injury of loquat fruit. Postharvest Biol Technol 203, 112417. |
[15] | Huang H, Zhao WC, Li CH, Qiao H, Song SS, Yang R, Sun LL, Ma JL, Ma XC, Wang SH (2022a). SlVQ15 interacts with jasmonate-ZIM domain proteins and SlWRKY31 to regulate defense response in tomato. Plant Physiol 190, 828-842. |
[16] | Huang H, Zhao WC, Qiao H, Li CH, Sun LL, Yang R, Ma XC, Ma JL, Song SS, Wang SH (2022b). SlWRKY45 interacts with jasmonate-ZIM domain proteins to negatively regulate defense against the root-knot nematode Meloidogyne incognita in tomato. Hortic Res 9, uhac197. |
[17] | Huo T, Wang CT, Yu TF, Wang DM, Li M, Zhao D, Li XT, Fu JD, Xu ZS, Song XY (2021). Overexpression of ZmWRKY65 transcription factor from maize confers stress resistances in transgenic Arabidopsis. Sci Rep 11, 4024. |
[18] | Ishiguro S, Nakamura K (1994). Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet 244, 563-571. |
[19] | Jia CP, Wang J, Guo B, Li X, Yang T, Yang HT, Li N, Wang BK, Yu QH (2023). A group III WRKY transcription factor, SlWRKY52, positively regulates drought tolerance in tomato. Environ Exp Bot 215, 105513. |
[20] | Li PT, Zhao ZL, Huang CH, Huang GQ, Xu LN, Deng ZH, Zhang Y, Zhao XW (2022). Analysis of drought responsive regulatory network in sugarcane based on transcriptome and WGCNA. Acta Agron Sin 48, 1583-1600. (in Chinese) |
李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺 (2022). 基于转录组及WGCNA的甘蔗干旱响应调控网络分析. 作物学报 48, 1583-1600.
DOI |
|
[21] | Li WX, Pang SY, Lu ZG, Jin B (2020). Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 9, 1515. |
[22] | Li YK, Jiang FL, Niu LF, Wang G, Yin J, Song XM, Ottosen CO, Rosenqvist E, Mittler R, Wu Z, Zhou R (2024). Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. Plant J 117, 1656-1675. |
[23] | Liang YF, Ma F, Li BY, Guo C, Hu TX, Zhang MK, Liang Y, Zhu JH, Zhan XQ (2022). A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato. Hortic Res 6, uhac198. |
[24] | Liu W, Liang XQ, Cai WJ, Wang H, Liu X, Cheng LF, Song PH, Luo GJ, Han DG (2022). Isolation and functional analysis of VvWRKY28, a Vitis vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana. Int J Mol Sci 23, 13418. |
[25] |
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods 25, 402-408.
DOI PMID |
[26] | Ma L, Li X, Zhang JJ, Yi DX, Li F, Wen HY, Liu WH, Wang XM (2023). MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription. Plant Cell Environ 46, 3887-3901. |
[27] | Mi XZ, Tang MS, Zhu JX, Shu MT, Wen HL, Zhu JY, Wei CL (2024). Alternative splicing of CsWRKY21 positively regulates cold response in tea plant. Plant Physiol Biochem 208, 108473. |
[28] | Qiu YP, Yu DQ (2009). Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ Exp Bot 65, 35-47. |
[29] | Shang CY, Liu XY, Chen G, Zheng H, Khan A, Li GB, Hu XH (2024). SlWRKY80-mediated jasmonic acid pathway positively regulates tomato resistance to saline-alkali stress by enhancing spermidine content and stabilizing Na+/K+ homeostasis. Hortic Res 11, uhae028. |
[30] |
Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010). Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284, 455-475.
DOI PMID |
[31] | Shi WY, Du YT, Ma J, Min DH, Jin LG, Chen J, Chen M, Zhou YB, Ma YZ, Xu ZS, Zhang XH (2018). The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int J Mol Sci 19, 4087. |
[32] | Shu P, Zhang SJ, Li YJ, Wang XY, Yao L, Sheng JP, Shen L (2021). Over-expression of SlWRKY46 in tomato plants increases susceptibility to Botrytis cinerea by modulating ROS homeostasis and SA and JA signaling pathways. Plant Physiol Biochem 166, 1-9. |
[33] | Sun H, Yue QY, Xiang GQ, Zhai H, Yao YX (2018). Impacts of different concentrations of NaCl on formation of grape berry quality. Plant Physiol J 54, 63-70. (in Chinese) |
孙红, 岳倩宇, 相广庆, 翟衡, 姚玉新 (2018). 不同浓度的NaCl处理对葡萄果实品质形成的影响. 植物生理学报, 54, 63-70. | |
[34] | Sun XC, Gao YF, Li HR, Yang SZ, Liu YS (2014). Cloning, disease resistance and salt tolerance analysis of SlWRKY23 in tomato. J Agric Sci Technol 16(5), 39-46. (in Chinese) |
孙晓春, 高永峰, 李会容, 杨述章, 刘永胜 (2014). 番茄SlWRKY23基因的克隆及其抗病性和耐盐性分析. 中国农业科技导报 16(5), 39-46. | |
[35] | Sun XC, Gao YF, Li HR, Yang SZ, Liu YS (2015). Over- expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato. J Plant Biol 58, 52-60. |
[36] | Tang JQ, Mei EY, He ML, Bu QY, Tian XJ (2022). Functions of OsWRKY24, OsWRKY70 and OsWRKY53 in regulating grain size in rice. Planta 255, 92. |
[37] | Wang C, Deng PY, Chen LL, Wang XT, Ma H, Hu W, Yao NC, Feng Y, Chai RH, Yang GX, He GY (2013). A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PLoS One 8, e65120. |
[38] | Wang C, Hao XL, Wang Y, Maoz I, Zhou W, Zhou ZG, Kai GY (2022). Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorrhiza pumila. Hortic Res 9, uhac099. |
[39] | Wang F, Chen HW, Li QT, Wei W, Li W, Zhang WK, Ma B, Bi YD, Lai YC, Liu XL, Man WQ, Zhang JS, Chen SY (2015). GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Plant J 83, 224-236. |
[40] | Wang F, Wang Q, Zhao XY (2019). Research progress of phenotype and physiological response mechanism of plants under low temperature stress. Mol Plant Breed 17, 5144-5153. (in Chinese) |
王芳, 王淇, 赵曦阳 (2019). 低温胁迫下植物的表型及生理响应机制研究进展. 分子植物育种 17, 5144-5153. | |
[41] | Wang LH, Chen H, Chen GY, Luo GB, Shen XY, Ouyang B, Bie ZL (2024). Transcription factor SlWRKY50 enhances cold tolerance in tomato by activating the jasmonic acid signaling. Plant Physiol 194, 1075-1090. |
[42] | Wang WJ, Li T, Chen Q, Yao SX, Zeng KF (2023). Transcriptional regulatory mechanism of a variant transcription factor CsWRKY23 in citrus fruit resistance to Penicillium digitatum. Food Chem 413, 135573. |
[43] | Wang YX, Meng QW, Ma NN (2021). Characterization and analysis of some chilling-response WRKY transcription fac- tors in tomato. Plant Physiol J 57, 1349-1362. (in Chinese) |
王艺璇, 孟庆伟, 马娜娜 (2021). 番茄低温响应WRKY转录因子的鉴定和分析. 植物生理学报 57, 1349-1362. | |
[44] |
Wei W, Cui MY, Yang H, Gao K, Xie YG, Jiang Y, Feng JY (2018). Ectopic expression of FvWRKY42, a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. Plant Sci 275, 60-74.
DOI PMID |
[45] | Wen WW, Wang RY, Su LT, Lv AM, Zhou P, An Y (2021). MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L.). Environ Exp Bot 184, 104373. |
[46] | Wu XL, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009). Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28, 21-30. |
[47] | Xu PY, Xu L, Xu HF, He XW, He P, Chang YS, Wang S, Zheng WY, Wang CZ, Chen X, Li LG, Wang HB (2023). MdWRKY40 is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple. J Integr Agric 22, 1704-1719. |
[48] | Xu XP, Chen CH, Fan BF, Chen ZX (2006). Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18, 1310-1326. |
[49] | Yang Z, Chi XY, Guo FF, Jin XY, Luo HL, Hawar A, Chen YX, Feng KK, Wang B, Qi JL, Yang YH, Sun B (2020). SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol 246-247, 153142. |
[50] | Ye H, Qiao LY, Guo HY, Guo LP, Ren F, Bai JF, Wang YK (2021). Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A is referred to drought and salt resistances. Front Plant Sci 12, 663118. |
[51] | Ye XX, Bi YJ, Ran Q, Zhang XH, Wang BJ (2023). The role of plant WRKY transcription factors against salt stress: a review. Chin J Biotechnol 39, 2600-2611. (in Chinese) |
叶相相, 毕永江, 冉琼, 张晓辉, 王邦俊 (2023). 植物WRKY转录因子在应对盐胁迫中的作用研究进展. 生物工程学报 39, 2600-2611. | |
[52] | Yu YG, Wu YX, He LY (2023). A wheat WRKY transcription factor TaWRKY17 enhances tolerance to salt stress in transgenic Arabidopsis and wheat plant. Plant Mol Biol 113, 171-191. |
[53] |
Zhang DY, Zhu ZW, Yang B, Li XF, Zhang HM, Zhu HF (2024). CsWRKY11 cooperates with CsNPR1 to regulate SA-triggered leaf de-greening and reactive oxygen species burst in cucumber. Mol Hortic 4, 21.
DOI PMID |
[54] | Zhang GY, Wei BQ (2020). Identification of WRKY gene family and their expression analysis under low-temperature stress in melon (Cucumis melo). J Agric Biotechnol 28, 1761-1775. (in Chinese) |
张高原, 魏兵强 (2020). 甜瓜WRKY基因家族鉴定及其响应低温胁迫的表达分析. 农业生物技术学报 28, 1761-1775. | |
[55] | Zhang LY, Song JN, Lin R, Tang MJ, Shao SJ, Yu JQ, Zhou YH (2022a). Tomato SlMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA- mediated cold tolerance. J Exp Bot 73, 7538-7551. |
[56] | Zhang WW, Zhao SQ, Gu S, Cao XY, Zhang Y, Niu JF, Liu L, Li AR, Jia WS, Qi BX, Xing Y (2022b). FvWRKY48 binds to the pectate lyase FvPLA promoter to control fruit softening in Fragaria vesca. Plant Physiol 189, 1037-1049. |
[57] | Zhang Y, Yu HJ, Yang XY, Li Q, Ling J, Wang H, Gu XF, Huang SW, Jiang WJ (2016). CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold- stress responsive genes in an ABA-dependent manner. Plant Physiol Biochem 108, 478-487. |
[58] | Zhao LP, Wang BK, Yang T, Li N, Yang HT, Wang J, Yan HZ (2024). Investigation of the regulation of drought tolerance by the SlHVA22l gene in tomato. Chin Bull Bot 59, 558-573. (in Chinese) |
赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转 (2024). SlHVA22l基因调节番茄耐旱性. 植物学报 59, 558-573.
DOI |
[1] | 欧阳子龙 贾湘璐 石景忠 滕维超 刘秀. 生长调节剂对低温胁迫及复温下红海榄幼苗光合特性的影响[J]. 植物生态学报, 2025, 49(4): 0-0. |
[2] | 田建红, 刘燕, 尹梦琪, 王静, 陈婷, 汪燕, 姜孝成. 水稻OsWAK16通过调节抗氧化酶活性调控种子抗老化能力(长英文摘要)[J]. 植物学报, 2025, 60(1): 17-32. |
[3] | 龙吉兰, 蒋铮, 刘定琴, 缪宇轩, 周灵燕, 冯颖, 裴佳宁, 刘瑞强, 周旭辉, 伏玉玲. 干旱下植物根系分泌物及其介导的根际激发效应研究进展[J]. 植物生态学报, 2024, 48(7): 817-827. |
[4] | 赵来鹏, 王柏柯, 杨涛, 李宁, 杨海涛, 王娟, 闫会转. SlHVA22l基因调节番茄耐旱性[J]. 植物学报, 2024, 59(4): 558-573. |
[5] | 廖人玉, 王佳伟. 从损伤到重生——REF1小肽如何激发植物的内在再生潜能[J]. 植物学报, 2024, 59(3): 347-350. |
[6] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[7] | 张盈川, 吴晓明玉, 陶保龙, 陈丽, 鲁海琴, 赵伦, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-miR43介导甘蓝型油菜响应干旱胁迫[J]. 植物学报, 2023, 58(5): 701-711. |
[8] | 蔡淑钰, 刘建新, 王国夫, 吴丽元, 宋江平. 褪黑素促进镉胁迫下番茄种子萌发的调控机理[J]. 植物学报, 2023, 58(5): 720-732. |
[9] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
[10] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[11] | 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强. PAC对谷子花后土壤氮素供应和叶片抗氧化特性的影响[J]. 植物学报, 2023, 58(1): 90-107. |
[12] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[13] | 郭书亚, 艾金祥, 陈虹宇, 邵烨瑶, 汪妍, 王倩, 叶怡彤, 张雅婷, 丁哲晓, 吴昊辰, 吴玉环, 张建新, 饶米德, 刘鹏. 基于主成分-聚类-逐步回归分析构建番茄苗期耐铝性综合评价体系[J]. 植物学报, 2022, 57(4): 479-489. |
[14] | 王晓敏, 李洪磊, 王林, 周鹏泽, 白圣懿, 李国花, 郑福顺, 陶小荣, 程国新, 高艳明, 李建设. 银川番茄斑萎病毒的分子鉴定[J]. 植物学报, 2021, 56(6): 715-721. |
[15] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||