植物学报 ›› 2022, Vol. 57 ›› Issue (2): 236-249.DOI: 10.11983/CBB21222
王璐瑶1,2, 陈謇3, 赵守清3, 闫慧莉1, 许文秀1, 刘若溪1,2, 麻密1, 虞轶俊4,*(), 何振艳1,*(
)
收稿日期:
2021-12-20
接受日期:
2022-01-20
出版日期:
2022-03-01
发布日期:
2022-03-24
通讯作者:
虞轶俊,何振艳
作者简介:
hezhenyan@ibcas.ac.cn基金资助:
Luyao Wang1,2, Jian Chen3, Shouqing Zhao3, Huili Yan1, Wenxiu Xu1, Ruoxi Liu1,2, Mi Ma1, Yijun Yu4,*(), Zhenyan He1,*(
)
Received:
2021-12-20
Accepted:
2022-01-20
Online:
2022-03-01
Published:
2022-03-24
Contact:
Yijun Yu,Zhenyan He
摘要:
我国的稻米镉超标对国民身体健康造成严重威胁, 而选育低镉积累的水稻(Oryza sativa)品种是降低稻米镉含量行之有效的策略, 因此有必要了解水稻对镉的积累特性及其生理过程和相关功能基因。该文概述了镉在水稻根部的吸收、木质部中的装载与运输、茎节中的分配、叶片中再分配以及籽粒镉积累等过程的生理和分子机制研究进展, 以期为低镉水稻的选育和安全生产提供理论参考。
王璐瑶, 陈謇, 赵守清, 闫慧莉, 许文秀, 刘若溪, 麻密, 虞轶俊, 何振艳. 水稻镉积累特性的生理和分子机制研究概述. 植物学报, 2022, 57(2): 236-249.
Luyao Wang, Jian Chen, Shouqing Zhao, Huili Yan, Wenxiu Xu, Ruoxi Liu, Mi Ma, Yijun Yu, Zhenyan He. Research Progress of the Physiological and Molecular Mechanisms of Cadmium Accumulation in Rice. Chinese Bulletin of Botany, 2022, 57(2): 236-249.
图1 水稻根部镉转运蛋白及镉在根中的径向转运示意图(Li et al., 2017; Zhao and Wang, 2020) 土壤中游离态的镉可在转运蛋白的协助下经共质体和质外体途径向根部中柱流动, 也可直接扩散至根内并向中柱转移。OsIRT2、OsFWL4、OsZIP1、OsNramp1和OsABCG43在根部表达但组织定位不明确(图中未标注)。
Figure 1 Schematic of Cd transporters in rice root and its radial transport route (Li et al., 2017; Zhao and Wang, 2020) With the help of transporter, the free Cd in soil can flow to root central column through the symplast and explast pathways, and can also directly diffuse into root and transfer to the central column. OsIRT2, OsFWL4, OsZIP1, OsNramp1 and OsABCG43 are expressed in root, but their tissue localization is not clear (not marked in the figure).
图2 水稻茎节镉转运蛋白及镉在水稻茎节内部的转运示意图(Uraguchi and Fujiwara, 2013; Yamaji and Ma, 2014, 2017) EVB: 大维管组织; DVB: 分散维管组织; PCB: 薄壁细胞桥
Figure 2 Schematic of Cd transporters in rice nodes and transport routes of Cd within nodes in rice (Uraguchi and Fujiwara, 2013; Yamaji and Ma, 2014, 2017) EVB: Enlarge vascular bundle; DVB: Diffuse vascular bundle; PCB: Parenchyma cell bridge
基因名称 | 基因ID | 主要表达部位 | 亚细胞定位 | 参考文献 |
---|---|---|---|---|
转运蛋白 | ||||
OsNRAMP1 | LOC_Os07g15460 | 根部, 具体组织不明 | 质膜 | Takahashi et al., |
OsNRAMP2 | LOC_Os03g11010 | 幼苗芽中表达, 具体组织不明 | 液泡膜 | Zhao et al., |
OsNRAMP5 | LOC_Os07g15370 | 根表皮、外皮层、皮层外侧以及维管束木质部周围组织 | 质膜 | Ishikawa et al., |
OsZIP1 | LOC_Os01g74110 | 根部, 具体组织不明 | 质膜 | Liu et al., |
OsZIP3 | LOC_Os04g52310 | 茎节处大维管束周围薄壁细胞 | 质膜 | Sasaki et al., |
OsZIP5 | LOC_Os05g39560 | 根表皮和维管束木质部周围薄壁细胞, 茎节大维管束木质部、分散维管束木质部和韧皮部周围薄壁细胞 | 质膜 | Tan et al., |
OsZIP6 | LOC_Os05g07210 | 根部和地上部, 具体组织不明 | 质膜 | Kavitha et al., |
OsZIP7 | LOC_Os05g10940 | 根中柱内薄壁细胞, 茎节大维管束周围薄壁细胞 | 质膜 | Tan et al., |
OsZIP9 | LOC_Os05g39540 | 根表皮, 茎节大维管束木质部、分散维管束木质部和韧皮部周围薄壁细胞 | 质膜 | Tan et al., |
OsIRT1 | LOC_Os03g46470 | 根部伸长区表皮和外皮层, 根部成熟区皮层内部; 根中柱韧皮部伴胞; 茎节韧皮部 | 质膜 | Ishimaru et al., |
OsIRT2 | LOC_Os03g46454 | 根部, 具体组织不明 | 质膜 | Nakanishi et al., |
OsABCG36 | LOC_Os01g42380 | 根部除表皮外全部组织 | 质膜 | Fu et al., |
OsABCG43 | LOC_Os07g33780 | 根部和地上部, 具体组织不明 | \ | Oda et al., |
OsCd1 | LOC_Os03g02380 | 根部全部组织 | 质膜 | Yan et al., |
OsHMA2 | LOC_Os06g48720 | 根部中柱鞘, 茎节大维管束和分散维管束的韧皮部 | 质膜 | Yamaji et al., |
OsHMA3 | LOC_Os07g12900 | 根部全部组织 | 液泡膜 | Ueno et al., |
OsFWL4 | LOC_Os03g61440 | 根、旗叶和叶鞘, 具体组织不详 | \ | Xiong et al., |
OsCCX2 | LOC_Os03g45370 | 茎节分散维管束以及大维管束的薄壁细胞 | 质膜 | Hao et al., |
OsLCT1 | LOC_Os06g38120 | 叶片, 第1节节点处大维管束和分散维管束周围的薄壁细胞 | 质膜 | Uraguchi et al., |
OsLCD | LOC_Os01g72670 | 叶片韧皮部伴胞; 根部维管束 | 细胞质, 细胞核 | Shimo et al., |
OsMTP1 | LOC_Os05g03780 | 根和茎, 具体组织不明; 叶片特定的筛管细胞 | 质膜 | Yuan et al., |
OsPCR1 | LOC_Os10g02300 | 苗期的根部; 生殖期的节间I、节间II和小穗 | 质膜 | Song et al., |
OsPCR3 | LOC_Os02g52550 | \ | \ | Wang et al., |
螯合蛋白 | ||||
CAL1 | LOC_Os02g41904 | 根外皮层和中柱木质部周围薄壁细胞, 叶鞘木质部周围薄壁细胞 | \ | Luo et al., |
OsMTI-1b | LOC_Os03g17870 | \ | \ | Ansarypour and Shahpiri, |
OsPCS1 | LOC_Os05g34290 | \ | \ | Uraguchi et al., |
OsPCS2 | LOC_Os06g01260 | \ | \ | Das et al., |
OsCDT1 | LOC_Os06g05120 | 根和茎 | \ | Kuramata et al., |
转录调控 | ||||
OsNAC3 | LOC_Os07g12340 | \ | \ | 王宝祥等, |
OsNAC300 | LOC_Os12g03050 | 根部, 具体组织不明 | \ | Hu et al., |
OsMYB45 | LOC_Os06g45890 | 叶片、谷壳、雄蕊、雌蕊和侧根 | \ | Hu et al., |
OsHsfA4a | LOC_Os01g54550 | \ | \ | Shim et al., |
OsTTA | LOC_Os03g13590 | \ | \ | Tanaka et al., |
表1 水稻中已报道的镉积累相关基因
Table 1 Cadmium accumulation related genes reported in rice
基因名称 | 基因ID | 主要表达部位 | 亚细胞定位 | 参考文献 |
---|---|---|---|---|
转运蛋白 | ||||
OsNRAMP1 | LOC_Os07g15460 | 根部, 具体组织不明 | 质膜 | Takahashi et al., |
OsNRAMP2 | LOC_Os03g11010 | 幼苗芽中表达, 具体组织不明 | 液泡膜 | Zhao et al., |
OsNRAMP5 | LOC_Os07g15370 | 根表皮、外皮层、皮层外侧以及维管束木质部周围组织 | 质膜 | Ishikawa et al., |
OsZIP1 | LOC_Os01g74110 | 根部, 具体组织不明 | 质膜 | Liu et al., |
OsZIP3 | LOC_Os04g52310 | 茎节处大维管束周围薄壁细胞 | 质膜 | Sasaki et al., |
OsZIP5 | LOC_Os05g39560 | 根表皮和维管束木质部周围薄壁细胞, 茎节大维管束木质部、分散维管束木质部和韧皮部周围薄壁细胞 | 质膜 | Tan et al., |
OsZIP6 | LOC_Os05g07210 | 根部和地上部, 具体组织不明 | 质膜 | Kavitha et al., |
OsZIP7 | LOC_Os05g10940 | 根中柱内薄壁细胞, 茎节大维管束周围薄壁细胞 | 质膜 | Tan et al., |
OsZIP9 | LOC_Os05g39540 | 根表皮, 茎节大维管束木质部、分散维管束木质部和韧皮部周围薄壁细胞 | 质膜 | Tan et al., |
OsIRT1 | LOC_Os03g46470 | 根部伸长区表皮和外皮层, 根部成熟区皮层内部; 根中柱韧皮部伴胞; 茎节韧皮部 | 质膜 | Ishimaru et al., |
OsIRT2 | LOC_Os03g46454 | 根部, 具体组织不明 | 质膜 | Nakanishi et al., |
OsABCG36 | LOC_Os01g42380 | 根部除表皮外全部组织 | 质膜 | Fu et al., |
OsABCG43 | LOC_Os07g33780 | 根部和地上部, 具体组织不明 | \ | Oda et al., |
OsCd1 | LOC_Os03g02380 | 根部全部组织 | 质膜 | Yan et al., |
OsHMA2 | LOC_Os06g48720 | 根部中柱鞘, 茎节大维管束和分散维管束的韧皮部 | 质膜 | Yamaji et al., |
OsHMA3 | LOC_Os07g12900 | 根部全部组织 | 液泡膜 | Ueno et al., |
OsFWL4 | LOC_Os03g61440 | 根、旗叶和叶鞘, 具体组织不详 | \ | Xiong et al., |
OsCCX2 | LOC_Os03g45370 | 茎节分散维管束以及大维管束的薄壁细胞 | 质膜 | Hao et al., |
OsLCT1 | LOC_Os06g38120 | 叶片, 第1节节点处大维管束和分散维管束周围的薄壁细胞 | 质膜 | Uraguchi et al., |
OsLCD | LOC_Os01g72670 | 叶片韧皮部伴胞; 根部维管束 | 细胞质, 细胞核 | Shimo et al., |
OsMTP1 | LOC_Os05g03780 | 根和茎, 具体组织不明; 叶片特定的筛管细胞 | 质膜 | Yuan et al., |
OsPCR1 | LOC_Os10g02300 | 苗期的根部; 生殖期的节间I、节间II和小穗 | 质膜 | Song et al., |
OsPCR3 | LOC_Os02g52550 | \ | \ | Wang et al., |
螯合蛋白 | ||||
CAL1 | LOC_Os02g41904 | 根外皮层和中柱木质部周围薄壁细胞, 叶鞘木质部周围薄壁细胞 | \ | Luo et al., |
OsMTI-1b | LOC_Os03g17870 | \ | \ | Ansarypour and Shahpiri, |
OsPCS1 | LOC_Os05g34290 | \ | \ | Uraguchi et al., |
OsPCS2 | LOC_Os06g01260 | \ | \ | Das et al., |
OsCDT1 | LOC_Os06g05120 | 根和茎 | \ | Kuramata et al., |
转录调控 | ||||
OsNAC3 | LOC_Os07g12340 | \ | \ | 王宝祥等, |
OsNAC300 | LOC_Os12g03050 | 根部, 具体组织不明 | \ | Hu et al., |
OsMYB45 | LOC_Os06g45890 | 叶片、谷壳、雄蕊、雌蕊和侧根 | \ | Hu et al., |
OsHsfA4a | LOC_Os01g54550 | \ | \ | Shim et al., |
OsTTA | LOC_Os03g13590 | \ | \ | Tanaka et al., |
[1] | 安婷婷, 黄帝, 王浩, 张一, 陈应龙 (2021). 植物响应镉胁迫的生理生化机制研究进展. 植物学报 56, 347-362. |
[2] | 郭韬, 余泓, 邱杰, 李家洋, 韩斌, 林鸿宣 (2019). 中国水稻遗传学研究进展与分子设计育种. 中国科学: 生命科学 49, 1185-1212. |
[3] |
黄新元, 赵方杰 (2018). 植物防御素调控水稻镉积累的新机制. 植物学报 53, 451-455.
DOI |
[4] | 贾沛菡 (2019). 水稻对镉的吸收受不同介质条件与生育期的影响及其与籽粒积累镉的关系. 硕士论文. 杭州: 浙江大学. pp. 1-103. |
[5] | 李铭红, 李侠, 宋瑞生 (2008). 受污农田中农作物对重金属镉的富集特征研究. 中国生态农业学报 16, 675-679. |
[6] | 李婷, 胡敏骏, 徐君, 蒋玉根, 闫慧莉, 虞轶俊, 何振艳 (2021). 镉低积累水稻品种选育研究进展. 中国农业科技导报 23(11), 36-46. |
[7] | 刘婷 (2017). 镉在不同基因型水稻根系的分布及转运特征. 硕士论文. 杭州: 浙江大学. pp. 1-85. |
[8] | 刘维涛, 周启星 (2010). 重金属污染预防品种的筛选与培育. 生态环境学报 19, 1452-1458. |
[9] | 马卉, 焦小雨, 许学, 李娟, 倪大虎, 许蓉芳, 王钰, 汪秀峰 (2020). 水稻重金属镉代谢的生理和分子机制研究进展. 作物杂志 (1), 1-8. |
[10] | 潘晨阳, 叶涵斐, 周维永, 王盛, 李梦佳, 路梅, 李三峰, 朱旭东, 王跃星, 饶玉春, 戴高兴 (2021). 水稻籽粒镉积累QTL定位及候选基因分析. 植物学报 56, 25-32. |
[11] | 王宝祥, 谭明普, 刘艳, 徐大勇, 郑青松, 赵海燕, 张杰 (2020). 水稻转录因子OsNAC3在提高植物耐镉能力中的应用. 中国专利, CN111041035A. 2020-04-21. |
[12] | 王欣梅, 肖革新, 曹贤文, 梁进军, 吴少伟 (2019). 湖南省大米中镉污染风险监测现状分析及应对策略. 环境卫生学杂志 9, 396-400, 404. |
[13] | 肖美秀, 林文雄, 陈祥旭, 梁义元 (2006). 镉在水稻体内的分配规律与水稻镉耐性的关系. 中国农学通报 22, 379-381. |
[14] | 徐晶晶, 吴波, 张玲妍, 郭书海, 李刚, 李凤梅 (2016). 基于贝叶斯方法的湖南湘潭稻米Cd超标风险评估. 应用生态学报 27, 3221-3227. |
[15] | 严勋, 唐杰, 李冰, 王昌全, 徐强, 蔡欣, 付铄岚 (2019). 不同水稻品种对镉积累的差异及其与镉亚细胞分布的关系. 生态毒理学报 14(5), 244-256. |
[16] | 杨居荣, 贺建群, 黄翌, 蒋婉茹 (1994). 农作物Cd耐性的种内和种间差异I. 种间差. 应用生态学报 5, 192-196. |
[17] | 张蕾, 吴隆坤, 李博骞, 吴思, 王健欣 (2017). 农作物镉积累的品种差异及其机理研究进展. 北方园艺 (2), 184-190. |
[18] | 周静, 杨洋, 孟桂元, 马国辉, 陈艳艳 (2018). 不同镉污染土壤下水稻镉富集与转运效率. 生态学杂志 37, 89-94. |
[19] |
Ansarypour Z, Shahpiri A (2017). Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance. Braz J Microbiol 48, 537-543.
DOI PMID |
[20] |
Arthur EE, Crews EH, Morgan EC (2000). Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. Int J Phytoremediat 2, 1-21.
DOI URL |
[21] |
Bari MA, El-Shehawi AM, Elseehy MM, Naheen NN, Rahman MM, Kabir AH (2021). Molecular characterization and bioinformatics analysis of transporter genes associated with Cd-induced phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 167, 438-448.
DOI URL |
[22] |
Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002). Cloning an iron-regulated metal transporter from rice. J Exp Bot 53, 1677-1682.
DOI URL |
[23] |
Chmielowska-Bak J, Gzyl J, Rucinska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014). The new insights into cadmium sensing. Front Plant Sci 5, 245.
DOI PMID |
[24] |
Clemens S (2019). Safer food through plant science: reducing toxic element accumulation in crops. J Exp Bot 70, 5537-5557.
DOI URL |
[25] |
Conn S, Gilliham M (2010). Comparative physiology of elemental distributions in plants. Ann Bot 105, 1081-1102.
DOI URL |
[26] |
Das N, Bhattacharya S, Bhattacharyya S, Maiti MK (2017). Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Plant Mol Biol 94, 167-183.
DOI URL |
[27] |
Fu S, Lu YS, Zhang X, Yang GZ, Chao D, Wang ZG, Shi MX, Chen JG, Chao DY, Li RB, Ma JF, Xia JX (2019). The ABC transporter ABCG36 is required for cadmium tolerance in rice. J Exp Bot 70, 5909-5918.
DOI URL |
[28] |
Fujimaki S, Suzui N, Ishioka NS, Kawachi N, Ito S, Chino M, Nakamura SI (2010). Tracing cadmium from culture to spikelet: noninvasive imaging and quantitative characterization of absorption, transport, and accumulation of cadmium in an intact rice plant. Plant Physiol 152, 1796- 1806.
DOI PMID |
[29] |
Gu Y, Wang P, Zhang S, Dai J, Chen HP, Lombi E, Howard DL, Van Der Ent A, Zhao FJ, Kopittke PM (2020). Chemical speciation and distribution of cadmium in rice grain and implications for bioavailability to humans. Environ Sci Technol 54, 12072-12080.
DOI URL |
[30] |
Hamid Y, Tang L, Yaseen M, Hussain B, Zehra A, Aziz MZ, He ZL, Yang XE (2019). Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere 214, 259-268.
DOI URL |
[31] |
Hao XH, Zeng M, Wang J, Zeng ZW, Dai JL, Xie ZJ, Yang YZ, Tian LF, Chen LB, Li DP (2018). A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front Plant Sci 9, 476.
DOI URL |
[32] |
Hayashi S, Tanikawa H, Kuramata M, Abe T, Ishikawa S (2020). Domain exchange between Oryza sativa phytochelatin synthases reveals a region that determines responsiveness to arsenic and heavy metals. Biochem Biophys Res Commun 523, 548-553.
DOI URL |
[33] |
Hu SB, Shinwari KI, Song YXR, Xia JX, Xu H, Du BB, Luo L, Zheng LQ (2021). OsNAC300 positively regulates cadmium stress responses and tolerance in rice roots. Agronomy 11, 95.
DOI URL |
[34] |
Hu SB, Yu Y, Chen QH, Mu GM, Shen ZG, Zheng LQ (2017). OsMYB45 plays an important role in rice resistance to cadmium stress. Plant Sci 264, 1-8.
DOI URL |
[35] |
Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, Nakanishi H (2012). Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low- cadmium rice. Proc Natl Acad Sci USA 109, 19166-19171.
DOI URL |
[36] |
Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011). Real- time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron- emitting 107Cd tracer. BMC Plant Biol 11, 172.
DOI PMID |
[37] |
Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45, 335-346.
DOI URL |
[38] |
Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2012). Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2, 286.
DOI URL |
[39] |
Kashiwagi T, Shindoh K, Hirotsu N, Ishimaru K (2009). Evidence for separate translocation pathways in determining cadmium accumulation in grain and aerial plant parts in rice. BMC Plant Biol 9, 8.
DOI PMID |
[40] |
Kavitha PG, Kuruvilla S, Mathew MK (2015). Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.). Plant Physiol Biochem 97, 165-174.
DOI URL |
[41] |
Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefian S, Kusano T (2009). Novel cysteine-rich peptides from Digitaria ciliaris and Oryza sativa enhance tolerance to cadmium by limiting its cellular accumulation. Plant Cell Physiol 50, 106-117.
DOI PMID |
[42] |
Li F, Wang JH, Xu L, Wang SX, Zhou MH, Yin JW, Lu AX (2018). Rapid screening of cadmium in rice and identification of geographical origins by spectral method. Int J Environ Res Public Health 15, 312.
DOI URL |
[43] |
Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH, Wong MH (2017). Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures. Environ Pollut 224, 622-630.
DOI URL |
[44] |
Liu CL, Gao ZY, Shang LG, Yang CH, Ruan BP, Zeng DL, Guo LB, Zhao FJ, Huang CF, Qian Q (2020). Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice. J Integr Plant Biol 62, 314-329.
DOI URL |
[45] |
Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, Chen X, Yang ZM (2019). OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19, 283.
DOI URL |
[46] | Luo JS, Huang J, Zeng DL, Peng JS, Zhang GB, Ma HL, Guan Y, Yi HY, Fu YL, Han B, Lin HX, Qian Q, Gong JM (2018). A defensin-like protein drives cadmium efflux and allocation in rice. Nat Commun 9, 645. |
[47] |
Lux A, Martinka M, Vaculik M, White PJ (2011). Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62, 21-37.
DOI URL |
[48] |
Malekzadeh R, Shahpiri A (2017). Independent metal- thiolate cluster formation in C-terminal Cys-rich region of a rice type 1 metallothionein isoform. Int J Biol Macromol 96, 436-441.
DOI PMID |
[49] |
Mao P, Zhuang P, Li F, McBride MB, Ren WD, Li YX, Li YW, Mo H, Fu HY, Li ZA (2019). Phosphate addition diminishes the efficacy of wollastonite in decreasing Cd uptake by rice (Oryza sativa L.) in paddy soil. Sci Total Environ 687, 441-450.
DOI URL |
[50] |
Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H (2011). OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189, 190-199.
DOI URL |
[51] |
Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52, 464-469.
DOI URL |
[52] |
Nezhad RM, Shahpiri A, Mirlohi A (2013). Heterologous expression and metal-binding characterization of a type 1 metallothionein isoform (OsMTI-1b) from rice (Oryza sativa). Protein J 32, 131-137.
DOI URL |
[53] |
Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011). Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34, 994-1008.
DOI URL |
[54] |
Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T (2011). Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast. Biosci Biotechnol Biochem 75, 1211-1213.
DOI URL |
[55] |
Qi XL, Tam NFY, Li WC, Ye ZH (2020). The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. Environ Pollut 264, 114736.
DOI URL |
[56] |
Rodda MS, Li G, Reid RJ (2011). The timing of grain Cd accumulation in rice plants: the relative importance of remobilisation within the plant and root Cd uptake post- flowering. Plant Soil 347, 105-114.
DOI URL |
[57] |
Sasaki A, Yamaji N, Mitani-Ueno N, Kashino M, Ma JF (2015). A node-localized transporter OsZIP3 is responsible for the preferential distribution of Zn to developing tissues in rice. Plant J 84, 374-384.
DOI URL |
[58] | Sebastian A, Prasad MNV (2015). Operative photo assimilation associated proteome modulations are critical for iron-dependent cadmium tolerance in Oryza sativa L. Pro- toplasma 252, 1375-1386. |
[59] |
Sebastian A, Prasad MNV (2016). Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron. Plant Biol 18, 1008-1015.
DOI URL |
[60] |
Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009). Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 21, 4031-4043.
DOI URL |
[61] |
Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011). Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot 62, 5727-5734.
DOI PMID |
[62] |
Song WY, Lee HS, Jin SR, Ko D, Martinoia E, Lee Y, An G, Ahn SN (2015). Rice PCR1 influences grain weight and Zn accumulation in grains. Plant Cell Environ 38, 2327-2339.
DOI URL |
[63] |
Song Y, Wang Y, Mao WF, Sui HX, Yong L, Yang DJ, Jiang DG, Zhang L, Gong YY (2017). Dietary cadmium exposure assessment among the Chinese population. PLoS One 12, e0177978.
DOI URL |
[64] |
Takahashi R, Ishimaru Y, Nakanishi H, Nishizawa NK (2011a). Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant Signal Behav 6, 1813-1816.
DOI URL |
[65] |
Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011b). The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62, 4843-4850.
DOI URL |
[66] |
Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012). The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35, 1948-1957.
DOI URL |
[67] |
Tan LT, Qu MM, Zhu YX, Peng C, Wang JR, Gao DY, Chen CY (2020). ZINC TRANSPORTER5 and ZINC TRANSPORTER9 function synergistically in Zinc/Cadmium uptake. Plant Physiol 183, 1235-1249.
DOI URL |
[68] |
Tan LT, Zhu YX, Fan T, Peng C, Wang JR, Sun L, Chen CY (2019). OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem Biophys Res Commun 512, 112-118.
DOI URL |
[69] |
Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H (2003). Cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.) treated with a nutrient solution containing cadmium. Soil Sci Plant Nutr 49, 311-313.
DOI URL |
[70] |
Tanaka K, Fujimaki S, Fujiwara T, Yoneyama T, Hayashi H (2007). Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Sci Plant Nutr 53, 72-77.
DOI URL |
[71] |
Tanaka N, Uraguchi S, Kajikawa M, Saito A, Ohmori Y, Fujiwara T (2018). A rice PHD-finger protein OsTITANIA, is a growth regulator that functions through elevating expression of transporter genes for multiple metals. Plant J 96, 997-1006.
DOI URL |
[72] |
Tang L, Mao BG, Li YK, Lv QM, Zhang LP, Chen CY, He HJ, Wang WP, Zeng XF, Shao Y, Pan YL, Hu YY, Peng Y, Fu XQ, Li HQ, Xia ST, Zhao BR (2017). Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7, 14438.
DOI PMID |
[73] |
Tefera W, Liu T, Lu LL, Ge J, Webb SM, Seifu W, Tian SK (2020). Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. Ecotoxicol Environ Saf 193, 110245.
DOI URL |
[74] |
Ueno D, Yamaji N, Kono I, Huang CF, Ando T, Yano M, Ma JF (2010). Gene limiting cadmium accumulation in rice. Proc Natl Acad Sci USA 107, 16500-16505.
DOI URL |
[75] |
Uraguchi S, Fujiwara T (2013). Rice breaks ground for cadmium-free cereals. Curr Opin Plant Biol 16, 328-334.
DOI PMID |
[76] |
Uraguchi S, Kamiya T, Sakamoto T, Kasai K, Sato Y, Nagamura Y, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T (2011). Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci USA 108, 20959-20964.
DOI URL |
[77] |
Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009). Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60, 2677-2688.
DOI PMID |
[78] |
Uraguchi S, Tanaka N, Hofmann C, Abiko K, Ohkama- Ohtsu N, Weber M, Kamiya T, Sone Y, Nakamura R, Takanezawa Y, Kiyono M, Fujiwara T, Clemens S (2017). Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains. Plant Cell Physiol 58, 1730-1742.
DOI PMID |
[79] |
Wang FJ, Tan HF, Han JH, Zhang YT, He X, Ding YF, Chen ZX, Zhu C (2019). A novel family of PLAC8 motif-containing/PCR genes mediates Cd tolerance and Cd accumulation in rice. Environ Sci Eur 31, 82.
DOI URL |
[80] |
Wang ME, Chen WP, Peng C (2016). Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China. Chemosphere 144, 346- 351.
DOI URL |
[81] |
Xiong WT, Wang P, Yan TZ, Cao BB, Xu J, Liu DF, Luo MZ (2018). The rice "fruit-weight 2.2-like" gene family member OsFWL4 is involved in the translocation of cadmium from roots to shoots. Planta 247, 1247-1260.
DOI URL |
[82] |
Yamaguchi N, Ishikawa S, Abe T, Baba K, Arao T, Terada Y (2012). Role of the node in controlling traffic of cadmium, zinc, and manganese in rice. J Exp Bot 63, 2729- 2737.
DOI PMID |
[83] |
Yamaji N, Ma JF (2014). The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19, 556-563.
DOI PMID |
[84] |
Yamaji N, Ma JF (2017). Node-controlled allocation of mine- ral elements in Poaceae. Curr Opin Plant Biol 39, 18-24.
DOI PMID |
[85] |
Yamaji N, Xia JX, Mitani-Ueno N, Yokosho K, Ma JF (2013). Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol 162, 927-939.
DOI PMID |
[86] |
Yan HL, Xu WX, Xie JY, Gao YW, Wu LL, Sun L, Feng L, Chen X, Zhang T, Dai CH, Li T, Lin XN, Zhang ZY, Wang XQ, Li FM, Zhu XY, Li JJ, Li ZC, Chen CY, Ma M, Zhang HL, He ZY (2019). Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat Commun 10, 2562.
DOI URL |
[87] |
Yuan LY, Yang SG, Liu BX, Zhang M, Wu KQ (2012). Molecular characterization of a rice metal tolerance protein, OsMTP1. Plant Cell Rep 31, 67-79.
DOI URL |
[88] |
Zhao FJ, Huang XY (2018). Cadmium phytoremediation: Call Rice CAL1. Mol Plant 11, 640-642.
DOI URL |
[89] |
Zhao FJ, Wang P (2020). Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446, 1-21.
DOI URL |
[90] |
Zhao JL, Yang W, Zhang SH, Yang TF, Liu Q, Dong JF, Fu H, Mao XX, Liu B (2018). Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection. Rice 11, 61.
DOI URL |
[91] |
Zheng X, Chen L, Li XF (2018). Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress. Bot Stud 59, 22.
DOI PMID |
[1] | 魏和平, 芦涛, 贾绮玮, 邓飞, 朱浩, 岂泽华, 王玉玺, 叶涵斐, 殷文晶, 方媛, 穆丹, 饶玉春. 水稻抽穗期QTL定位及候选基因分析[J]. 植物学报, 2022, 57(5): 588-595. |
[2] | 刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪. 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应[J]. 植物学报, 2022, 57(5): 596-610. |
[3] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[4] | 杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春. 水稻黄绿叶调控基因YGL18的克隆与功能解析[J]. 植物学报, 2022, 57(3): 276-287. |
[5] | 徐海霞, 何静, 易航, 王丽. 镉胁迫下地钱转录组的性别特异性响应机制[J]. 植物学报, 2022, 57(2): 182-196. |
[6] | 叶涵斐, 殷文晶, 管易安, 杨凯如, 陈芊羽, 俞淑颖, 朱旭东, 辛德东, 章薇, 王跃星, 饶玉春. 水稻籽粒维生素E QTL挖掘及候选基因分析[J]. 植物学报, 2022, 57(2): 157-170. |
[7] | 余泓, 李家洋. 是金子无论在何处都发光: 玉米和水稻驯化中的趋同选择[J]. 植物学报, 2022, 57(2): 153-156. |
[8] | 王霞, 严维, 周志勤, 常振仪, 郑敏婷, 唐晓艳, 吴建新. 水稻雄性不育突变体ms102的鉴定和基因定位[J]. 植物学报, 2022, 57(1): 42-55. |
[9] | 王田幸子, 朱峥, 陈悦, 刘玉晴, 燕高伟, 徐珊, 张彤, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻OsWRKY42是Xa21介导的抗白叶枯病途径新元件[J]. 植物学报, 2021, 56(6): 687-698. |
[10] | 尚江源, 淳雁, 李学勇. 水稻穗长基因PAL3的克隆及自然变异分析[J]. 植物学报, 2021, 56(5): 520-532. |
[11] | 周俭民. 免疫信号轴揭示水稻与病原菌斗争的秘密[J]. 植物学报, 2021, 56(5): 513-515. |
[12] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[13] | 张慧, 刘倩, 黄晓磊. 社会性昆虫级型和行为分化机制研究进展[J]. 生物多样性, 2021, 29(4): 507-516. |
[14] | 李三和, 刘凯, 闸雯俊, 徐华山, 李培德, 周雷, 游艾青. 转BPH9和Bar基因抗褐飞虱耐除草剂水稻‘H23’对非靶标生物的影响[J]. 生物多样性, 2021, 29(4): 488-494. |
[15] | 江建华, 党小景, 姚文豪, 胡梦竹, 王雨停, 胡长敏, 张瑛, 王德正. 水稻核不育系4个柱头性状的遗传分析[J]. 植物学报, 2021, 56(3): 284-295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||