植物学报 ›› 2021, Vol. 56 ›› Issue (1): 6-9.DOI: 10.11983/CBB20190 cstr: 32102.14.CBB20190
收稿日期:
2020-11-25
接受日期:
2021-01-05
出版日期:
2021-01-01
发布日期:
2021-01-15
通讯作者:
徐通达
作者简介:
E-mail: tdxu@sibs.ac.cn基金资助:
Received:
2020-11-25
Accepted:
2021-01-05
Online:
2021-01-01
Published:
2021-01-15
Contact:
Tongda Xu
摘要: 促分裂原活化蛋白激酶(MAPK)信号级联通路是真核生物中高度保守的重要信号系统, 通过激酶逐级磷酸化传递并放大上游信号, 进而调控细胞反应。MAPK信号通路不仅介导植物响应环境变化, 而且在调节植物生长发育过程中发挥重要作用。近期, 山东大学丁兆军课题组研究发现, 植物重要激素生长素能够通过激活MPK14调控下游ERF13的磷酸化, 进而影响超长链脂肪酸的合成并调控侧根发育。该研究从全新的角度解析了侧根起始的新机制, 并进一步证实生长素和古老的信号转导模块MAPKs相偶联的分子机制。侧根作为植物响应环境最重要的器官之一, MAPK信号通路在侧根发育过程中的功能解析可为阐明植物如何整合发育和环境信号提供新思路。
黄荣峰, 徐通达. 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育. 植物学报, 2021, 56(1): 6-9.
Rongfeng Huang, Tongda Xu. Auxin Regulates the Lateral Root Development Through MAPK-mediated VLCFAs Biosynthesis. Chinese Bulletin of Botany, 2021, 56(1): 6-9.
图1 MPK14介导的生长素信号通路调控侧根发育工作模型 LRP: 侧根原基; En: 内皮层; Co: 皮层; Ep: 表皮
Figure 1 A working model of MPK14-mediated auxin signaling to control lateral root development LRP: Lateral root primordium; En: Endodermis; Co: Cortex; Ep: Epidermis
[1] | 黎家, 李传友 (2019). 新中国成立70年来植物激素研究进展. 中国科学: 生命科学 49, 1227-1281. |
[2] |
Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc'h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57, 626-644.
URL PMID |
[3] |
Bach L, Faure JD (2010). Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies 333, 361-370.
URL PMID |
[4] | Bach L, Gissot L, Marion J, Tellier F, Moreau P, Satiat-Jeunemaître B, Palauqui JC, Napier JA, Faure JD (2011). Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J Cell Sci 124, 3223-3234. |
[5] |
Che P, Lall S, Howell SH (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226, 1183-1194.
URL PMID |
[6] | De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Vanneste S, Möller B, Wilson M, Holman T, Van Isterdael G, Brunoud G, Vuylsteke M, Vernoux T, De Veylder L, Inzé D, Weijers D, Bennett MJ, Beeckman T (2010). A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20, 1697-1706. |
[7] | Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H (2012). Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3 -mediated auxin signaling. Philos Trans Roy Soc B: Biol Sci 367, 1461-1468. |
[8] | Hamann T, Benkova E, Baurle I, Kientz M, Jürgens G (2002). The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16, 1610-1615. |
[9] | He YX, Meng XZ (2020). MAPK signaling: emerging roles in lateral root formation. Trends Plant Sci 25, 126-129. |
[10] | Huang RF, Zheng R, He J, Zhou ZM, Wang JC, Xiong Y, Xu TD (2019). Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc Natl Acad Sci USA 116, 21285-21290. |
[11] | Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013). Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18, 450-458. |
[12] |
Lee HW, Kim NY, Lee DJ, Kim J (2009). LBD18/ ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol 151, 1377-1389.
URL PMID |
[13] | Lv BS, Wei KJ, Hu KQ, Tian T, Zhang F, Yu ZP, Zhang DJ, Su YH, Sang YL, Zhang XS, Ding ZJ (2021). MPK14- mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Mol Plant 14, 285-297. |
[14] | Malamy JE, Benfey PN (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33-44. |
[15] |
Nakagami H, Pitzschke A, Hirt H (2005). Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10, 339-346.
URL PMID |
[16] |
Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009). Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14, 399-408.
URL PMID |
[17] |
Pitzschke A, Schikora A, Hirt H (2009). MAPK cascade signaling networks in plant defence. Curr Opin Plant Biol 12, 421-426.
URL PMID |
[18] | Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007). Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19, 3692-3704. |
[19] | Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui JC, Bellec Y, Renne C, Miquel M, DaCosta M, Vignard J, Rochat C, Markham JE, Moreau P, Napier J, Faure JD (2010). Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22, 364-375. |
[20] | Seo PJ, Park CM (2011). Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6, 1043-1045. |
[21] |
Shang BS, Xu CY, Zhang XX, Cao HF, Xin W, Hu YX (2016). Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc Natl Acad Sci USA 113, 5101-5106.
DOI URL PMID |
[22] |
Smirnova A, Leide J, Riederer M (2013). Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion. Plant Physiol 161, 196-209.
DOI URL |
[23] |
Sugimoto K, Jiao YL, Meyerowitz EM (2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18, 463-471.
DOI URL |
[24] | Xu J, Zhang SQ (2015). Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20, 56-64. |
[25] | Zhu QK, Shao YM, Ge ST, Zhang MM, Zhang TS, Hu XT, Liu YD, Walker J, Zhang SQ, Xu J (2019). A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence. Nat Plants 5, 414-423. |
[1] | 周玉滢, 陈辉, 刘斯穆. 植物非典型Aux/IAA蛋白应答生长素研究进展[J]. 植物学报, 2024, 59(4): 651-658. |
[2] | 孔祥培, 张蒙悦, 丁兆军. 柳暗花明:胞外生长素信号感受的新突破[J]. 植物学报, 2023, 58(6): 861-865. |
[3] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[4] | 周淑瑶, 李建明, 毛娟. AtGH3.17调控拟南芥生长素和油菜素甾醇的响应[J]. 植物学报, 2023, 58(3): 373-384. |
[5] | 叶青, 闫晓燕, 陈慧泽, 冯金林, 韩榕. 氮掺杂石墨烯量子点对拟南芥主根生长方向的影响[J]. 植物学报, 2022, 57(5): 623-634. |
[6] | 贾利霞, 齐艳华. 生长素代谢、运输及信号转导调控水稻粒型研究进展[J]. 植物学报, 2022, 57(3): 263-275. |
[7] | 李彬琪, 闫佳慧, 李豪, 辛伟, 田云鹤, 杨贞标, 唐文鑫. 黄瓜卷须缠绕过程中小G蛋白活性变化[J]. 植物学报, 2022, 57(3): 299-307. |
[8] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[9] | 王静文, 王兴军, 马长乐, 李膨呈. 植物核糖体应激响应机制研究进展[J]. 植物学报, 2022, 57(1): 80-89. |
[10] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[11] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[12] | 姚玉婷,马家琦,冯晓莉,潘建伟,王超. 磷酸肌醇激酶FAB1调控拟南芥根毛伸长[J]. 植物学报, 2020, 55(2): 126-136. |
[13] | 张淑辉,王红,王文茹,吴雪莲,肖元松,彭福田. 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响[J]. 植物学报, 2019, 54(6): 744-752. |
[14] | 贺祯媚,李东明,齐艳华. 植物ABCB亚家族生物学功能研究进展[J]. 植物学报, 2019, 54(6): 688-698. |
[15] | 胡孔琴, 丁兆军. 非TIR1受体依赖型激活生长素信号的新机制[J]. 植物学报, 2019, 54(3): 293-295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||