植物学报 ›› 2015, Vol. 50 ›› Issue (5): 644-.DOI: 10.11983/CBB14172
收稿日期:
2014-09-22
接受日期:
2015-04-02
出版日期:
2015-09-01
发布日期:
2015-10-09
通讯作者:
孔英珍
作者简介:
? 共同第一作者
基金资助:
Minmin Xie, Jiangtao Chao, Yingzhen Kong*
Received:
2014-09-22
Accepted:
2015-04-02
Online:
2015-09-01
Published:
2015-10-09
Contact:
Kong Yingzhen
About author:
? These authors contributed equally to this paper
摘要: 半纤维素多糖木葡聚糖(XyG)存在于大多数植物的初生细胞壁中, 对细胞壁的结构组织和生长发育具有重要的调控作用。XyG在植物进化中存在结构的多样性。该文概述了参与XyG合成的糖基转移酶的最新研究进展, XyG合成需要多种糖基转移酶参与, 这些酶类很可能以蛋白酶复合体的形式存在并发挥作用, XyG的结构和组成的改变对植物的生长发育也产生影响。
解敏敏, 晁江涛, 孔英珍. 参与木葡聚糖合成的糖基转移酶基因研究进展. 植物学报, 2015, 50(5): 644-.
Minmin Xie, Jiangtao Chao, Yingzhen Kong. Glycosyltransferase Genes Involved in Xyloglucan Biosynthesis. Chinese Bulletin of Botany, 2015, 50(5): 644-.
图1 部分陆生植物的代表性木葡聚糖亚基结构及参与其合成的糖基转移酶催化位点 (A) XLFG亚基结构, XXT1、XXT2和XXT5催化木糖基团的转移; (B) YXXG亚基结构, XUT1催化半乳糖醛酸基团的转移; (C) XXJG亚基结构; (D) XSGG亚基结构。Fucp: 岩藻糖; Xylp: 木糖; Galp: 半乳糖; Glcp: 葡萄糖; GalpA: 半乳糖醛酸; OAC: 乙酰化基团
Figure 1 Structures of the representative XyGs subunits and glycosyltransferases that involved in xyloglucan biosynthesis(A) The structure of the XLFG subunit, XXT1, XXT2 and XXT5 are xyloglucan xylosyltransferases that adding xylose residues; (B) The structure of the YXXG subunit, XUT1 is a xyloglucan-specific galacturonosyltransferase1; (C) The structure of the XXJG subunit; (D) The structure of the XSGG subunit. Fucp: Fucose; Xylp: Xylose; Galp: Galactose; Glcp: Glucose; GalpA: Galacturonic acid; OAC: Acetylation
1 | Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible WR (2010). TRICHOME BIREFRINGENCE and its homolog AT5G0- 1360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis.Plant Physiol 153, 590-602. |
2 | Bootten TJ, Harris PJ, Melton LD, Newman RH (2004). Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan-cellulose interactions in the cell wall.J Exp Bot 55, 571-583. |
3 | Caffall KH, Mohnen D (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides.Carbohydr Res 344, 1879-1900. |
4 | Cavalier DM, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina OA, Hahn MG, Burgert I, Pauly M, Raikhel NV, Keegstra K (2008). Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component.Plant Cell 20, 1519-1537. |
5 | Chou YH, Pogorelko G, Zabotina OA (2012). Xyloglucan xylosyltransferases XXT1, XXT2, and XXT5 and the glucan synthase CSLC4 form Golgi-localized multiprotein complexes.Plant Physiol 159, 1355-1366. |
6 | Cocuron JC, Lerouxel O, Drakakaki G, Alonso AP, Liepman AH, Keegstra K, Raikhel N, Wilkerson CG (2007). A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase.Proc Natl Acad Sci USA 104, 8550-8555. |
7 | Cosgrove DJ (2005). Growth of the plant cell wall.Nat Rev Mol Cell Biol 6, 850-861. |
8 | Cosgrove DJ, Jarvis MC (2012). Comparative structure and biomechanics of plant primary and secondary cell walls.Front Plant Sci 3, 204. |
9 | Davis J, Brandizzi F, Liepman AH, Keegstra K (2010). Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane.Plant J 64, 1028-1037. |
10 | Dick-Pérez M, Zhang Y, Hayes J, Salazar A, Zabotina OA, Hong M (2011). Structure and interactions of plant cell-wall polysaccharides by two- and three-dimensional magic-angle-spinning solid-state NMR. Biochemistry 50, 989-1000. |
11 | Gibeaut DM, Pauly M, Bacic A, Fincher GB (2005). Changes in cell wall polysaccharides in developing barley (Hordeum vulgare) coleoptiles.Planta 221, 729-738. |
12 | Gille S, de Souza A, Xiong GY, Benz M, Cheng K, Schultink A, Reca IB, Pauly M (2011). O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain.Plant Cell 23, 4041-4053. |
13 | Hantus S, Pauly M, Darvill AG, Albersheim P, York WS (1997). Structural characterization of novel L-galactose- containing oligosaccharide subunits of jojoba seed xyloglucans.Carbohydr Res 304, 11-20. |
14 | Hoffman M, Jia ZH, Peña MJ, Cash M, Harper A, Blackburn AR 2nd, Darvill A, York WS (2005). Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae.Carbohydr Res 340, 1826-1840. |
15 | Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M (2012). RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis.Mol Plant 5, 984-992. |
16 | Jia ZH, Cash M, Darvill AG, York WS (2005). NMR characterization of endogenously O-acetylated oligosaccharides isolated from tomato (Lycopersicon esculentum) xyloglucan.Carbohydr Res 340, 1818-1825. |
17 | Kong YZ, Peña MJ, Renna L, Avci U, Pattathil S, Tuomivaara ST, Li XM, Reiter WD, Brandizzi F, Hahn MG, Darvill AG, York WS, O'Neill MA (2015). Galactose- depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis.Plant Physiol 167, 1296-1306. |
18 | Kong YZ, Zhou GK, Abdeen AA, Schafhauser J, Rich- ardson B, Atmodjo MA, Jung J, Wicker L, Mohnen D, Western T, Hahn MG (2013). GALACTURONOSYLTRANSFERASE-LIKE5 is involved in the production of Arabidopsis seed coat mucilage.Plant Physiol 163, 1203-1217. |
19 | Kong YZ, Zhou GK, Avci U, Gu XG, Jones C, Yin YB, Xu Y, Hahn MG (2009). Two poplar glycosyltransferase genes, PdGATL1.1 and PdGATL1.2, are functional ortho- logs to PARVUS/AtGATL1 in Arabidopsis.Mol Plant 2, 1040-1050. |
20 | Kong YZ, Zhou GK, Yin YB, Xu Y, Pattathil S, Hahn MG (2011). Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases.Plant Phy- siol 155, 1791-1805. |
21 | Li WB, Guan QM, Wang ZY, Wang YD, Zhu JH (2013). A bi-functional xyloglucan galactosyltransferase is an indispensable salt stress tolerance determinant in Arabidopsis.Mol Plant 6, 1344-1354. |
22 | Li XM, Cordero I, Caplan J, Mølhøj M, Reiter WD (2004). Molecular analysis of 10 coding regions from Arabidopsis that are homologous to the MUR3 xyloglucan galactosyltransferase.Plant Physiol 134, 940-950. |
23 | Liepman AH, Cavalier DM (2012). The CELLULOSE SYN- THASE-LIKE A and CELLULOSE SYNTHASE-LIKE C families: recent advances and future perspectives.Front Plant Sci 3, 109. |
24 | Madson M (2003). The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins.Plant Cell Online 15, 1662-1670. |
25 | Manabe Y, Nafisi M, Verhertbruggen Y, Orfila C, Gille S, Rautengarten C, Cherk C, Marcus SE, Somerville S, Pauly M, Knox JP, Sakuragi Y, Scheller HV (2011). Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea.Plant Physiol 155, 1068-1078. |
26 | Park YB, Cosgrove DJ (2012a). Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/ xxt2 mutant of Arabidopsis.Plant Physiol 158, 465-475. |
27 | Park YB, Cosgrove DJ (2012b). A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.Plant Phy- siol 158, 1933-1943. |
28 | Pauly M, Gille S, Liu LF, Mansoori N, de Souza A, Schultink A, Xiong GY (2013). Hemicellulose biosynthesis.Planta 238, 627-642. |
29 | Pauly M, Keegstra K (2010). Plant cell wall polymers as precursors for biofuels.Curr Opin Plant Biol 13, 305-312. |
30 | Peña MJ, Darvill AG, Eberhard S, York WS, O'Neill MA (2008). Moss and liverwort xyloglucans contain galacturonic acid and are structurally distinct from the xyloglucans synthesized by hornworts and vascular plants.Glycobiology 18, 891-904. |
31 | Peña MJ, Kong YZ, York WS, O'Neill MA (2012). A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth.Plant Cell 24, 4511-4524. |
32 | Peña MJ, Ryden P, Madson M, Smith AC, Carpita NC (2004). The galactose residues of xyloglucan are essential to maintain mechanical strength of the primary cell walls in Arabidopsis during growth.Plant Physiol 134, 443-451. |
33 | Perrin RM, Jia ZH, Wagner TA, O'Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003). Analysis of xyloglucan fucosylation in Arabidopsis.Plant Physiol 132, 768-778. |
34 | Pogorelko G, Lionetti V, Fursova O, Sundaram RM, Qi MS, Whitham SA, Bogdanove AJ, Bellincampi D, Zabotina OA (2013). Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of poly- saccharide acetylation and increased resistance to pathogens.Plant Physiol 162, 9-23. |
35 | Schultink A, Cheng K, Park YB, Cosgrove DJ, Pauly M (2013). The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents.Plant Physiol 163, 86-94. |
36 | Shirakawa M, Yamatoya K, Nishinari K (1998). Tailoring of xyloglucan properties using an enzyme.Food Hydrocoll 12, 25-28. |
37 | Søgaard C, Stenbæk A, Bernard S, Hadi M, Driouich A, Scheller HV, Sakuragi Y (2012). GO-PROMTO illuminates protein membrane topologies of glycan biosynthetic enzymes in the Golgi apparatus of living tissues.PLoS One 7, e31324. |
38 | Takeda T, Furuta Y, Awano T, Mizuno K, Mitsuishi Y, Hayashi T (2002). Suppression and acceleration of cell elongation by integration of xyloglucans in pea stem segments.Proc Natl Acad Sci USA 99, 9055-9060. |
39 | Tamura K, Shimada T, Kondo M, Nishimura M, Hara- Nishimura I (2005). KATAMARI1/MURUS3 is a novel golgi membrane protein that is required for endomembrane organization in Arabidopsis.Plant Cell 17, 1764-1776. |
40 | Tedman-Jones JD, Lei R, Jay F, Fabro G, Li XM, Reiter WD, Brearley C, Jones JDG (2008). Characterization of Arabidopsis mur3 mutations that result in constitutive activation of defence in petioles, but not leaves.Plant J 56, 691-703. |
41 | Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002). The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1.Proc Natl Acad Sci USA 99, 3340-3345. |
42 | von Schantz L, Gullfot F, Scheer S, Filonova L, Cicortas Gunnarsson L, Flint JE, Daniel G, Nordberg-Karlsson E, Brumer H, Ohlin M (2009). Affinity maturation generates greatly improved xyloglucan-specific carbohydrate binding modules.BMC Biotechnol 9, 92. |
43 | Vuttipongchaikij S, Brocklehurst D, Steele-King C, Ashford DA, Gomez LD, McQueen-Mason SJ (2012). Ara- bidopsis GT34 family contains five xyloglucan α-1,6-xylos- yltransferases.New Phytol 195, 585-595. |
44 | Wang C, Li S, Ng S, Zhang BC, Zhou YH, Whelan J, Wu P, Shou HX (2014). Mutation in xyloglucan 6-xylosytrans- ferase results in abnormal root hair development in Oryza sativa.J Exp Bot 65, 4149-4157. |
45 | Whitney SEC, Wilson E, Webster J, Bacic A, Reid JSG, Gidley MJ (2006). Effects of structural variation in xyloglucan polymers on interactions with bacterial cellulose.Am J Bot 93, 1402-1414. |
46 | Wolf S, Hématy K, Höfte H (2012). Growth control and cell wall signaling in plants.Annu Rev Plant Biol 63, 381-407. |
47 | York WS, Kumar Kolli VS, Orlando R, Albersheim P, Darvill AG (1996). The structures of arabinoxyloglucans produced by solanaceous plants.Carbohydr Res 285, 99-128. |
48 | Zabotina OA, Avci U, Cavalier D, Pattathil S, Chou YH, Eberhard S, Danhof L, Keegstra K, Hahn MG (2012). Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis.Plant Physiol 159, 1367-1384. |
49 | Zabotina OA, van de Ven WTG, Freshour G, Drakakaki G, Cavalier D, Mouille G, Hahn MG, Keegstra K, Raikhel NV (2008). Arabidopsis XXT5 gene encodes a putative α-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis.Plant J 56, 101-115. |
50 | Zhu XF, Sun Y, Zhang BC, Mansoori N, Wan JX, Liu Y, Wang ZW, Shi YZ, Zhou YH, Zheng SJ (2014). TRICHOME BIREFRINGENCE-LIKE27 affects aluminum sensitivity by modulating the O-acetylation of xyloglucan and aluminum-binding capacity in Arabidopsis.Plant Phy- siol 166, 181-189. |
[1] | 夏婧, 饶玉春, 曹丹芸, 王逸, 柳林昕, 徐雅婷, 牟望舒, 薛大伟. 水稻中乙烯生物合成关键酶OsACS和OsACO调控机制研究进展[J]. 植物学报, 2024, 59(2): 291-301. |
[2] | 赵晗茜, 宋佳怡, 杨洁, 赵永晶, 夏文念, 顾伟卓, 汪仲毅, 杨楠, 胡慧贞. 金鱼草XTH家族基因鉴定及抗核盘菌和雄蕊瓣化相关基因筛选[J]. 植物学报, 2024, 59(2): 188-203. |
[3] | 朱璐, 袁冲, 刘义飞. 植物次生代谢产物生物合成基因簇研究进展[J]. 植物学报, 2024, 59(1): 134-143. |
[4] | 刘潇潇, 巩迪, 高天鹏, 殷俐娜, 王仕稳. 植物类囊体主要膜脂及其生物合成[J]. 植物学报, 2024, 59(1): 144-155. |
[5] | 张御格, 袁笑妍, 张贵芳, 李雨健, 殷金环, 林金星, 李晓娟. 点击化学反应在植物细胞标记中的应用[J]. 植物学报, 2023, 58(6): 956-965. |
[6] | 胡海涛, 郭龙彪. 植物核黄素的生物合成及其功能研究进展[J]. 植物学报, 2023, 58(4): 638-655. |
[7] | 郭彦君, 陈枫, 罗敬文, 曾为, 许文亮. 植物细胞壁木聚糖的生物合成及其应用[J]. 植物学报, 2023, 58(2): 316-334. |
[8] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[9] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[10] | 刘德帅, 姚磊, 徐伟荣, 冯美, 姚文孔. 褪黑素参与植物抗逆功能研究进展[J]. 植物学报, 2022, 57(1): 111-126. |
[11] | 刘佩佩, 张耿, 李晓娟. 植物果胶的生物合成与功能[J]. 植物学报, 2021, 56(2): 191-200. |
[12] | 肖银燕, 袁伟娜, 刘静, 孟建, 盛奇明, 谭烨欢, 徐春香. 木葡聚糖及其在植物抗逆过程中的功能研究进展[J]. 植物学报, 2020, 55(6): 777-787. |
[13] | 张雨, 赵明洁, 张蔚. 植物次生细胞壁生物合成的转录调控网络[J]. 植物学报, 2020, 55(3): 351-368. |
[14] | 董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷. 转录因子调控植物萜类化合物生物合成研究进展[J]. 植物学报, 2020, 55(3): 340-350. |
[15] | 段瑞君, 王爱东, 陈国雄. 植物角质层基因研究进展[J]. 植物学报, 2017, 52(5): 637-651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||