植物学报 ›› 2025, Vol. 60 ›› Issue (4): 597-610.DOI: 10.11983/CBB24151  cstr: 32102.14.CBB24151

• 技术方法 • 上一篇    下一篇

菊花品种万代风光再生及遗传转化体系的建立

李晶晶, 李艳飞, 王安琪, 王佳颖, 邓成燕, 卢敏, 马剑英, 戴思兰*()   

  1. 北京林业大学园林学院, 城乡生态环境北京实验室, 花卉种质创新与分子育种北京市重点实验室, 国家花卉工程技术研究中心, 北京 100083
  • 收稿日期:2024-10-10 接受日期:2025-01-20 出版日期:2025-07-10 发布日期:2025-01-21
  • 通讯作者: 戴思兰
  • 作者简介:第一联系人:

    †共同第一作者

  • 基金资助:
    国家自然科学基金(32171849);国家自然科学基金(32371948);福建省科技计划(2022S0004)

Establishment of Regeneration and Genetic Transformation System for Chrysanthemum × morifolium ‘Wandai Fengguang’

Jingjing Li, Yanfei Li, Anqi Wang, Jiaying Wang, Chengyan Deng, Min Lu, Jianying Ma, Silan Dai*()   

  1. National Engineering Research Center for Floriculture, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
  • Received:2024-10-10 Accepted:2025-01-20 Online:2025-07-10 Published:2025-01-21
  • Contact: Silan Dai
  • About author:First author contact:

    †These authors contributed equally to this paper

摘要: 菊花品种万代风光(Chrysanthemum × morifolium ‘Wandai Fengguang’)的色素背景适宜利用分子育种技术调控花瓣铁离子浓度进而培育蓝色花, 且其在夏秋两季均可开花, 是研究菊花开花期分子调控机理的重要材料, 但缺少高效的再生体系和遗传转化体系。以该品种为实验材料, 研究不同外植体类型和植物生长调节剂组合对其再生的影响, 并探讨农杆菌介导的遗传转化方法中相关因素对遗传转化效率的影响。结果表明, 适宜菊花万代风光再生的最适外植体为茎间薄层, 最适培养基为MS+1.5 mg∙L-1 6-BA+0.6 mg∙L-1 NAA, 分化率为70.06%, 不定芽生成系数为3.37; 实验确定茎间薄层分化和不定芽生根的卡那霉素选择压分别为7.5 mg∙L-1和5.0 mg∙L-1。预培养1天、OD600=0.8、处理5分钟及黑暗条件下共培养3天为最佳遗传转化体系。经过卡那霉素筛选共获得抗性苗15株, PCR鉴定发现2株阳性苗, 转化效率为13.33%。研究结果为利用这一独特品种资源解析菊花基因功能和进行定向改良的分子育种奠定了基础, 也为其它菊花品种的再生和转化体系建立提供参考。

关键词: 菊花, 外植体, 遗传转化体系, 再生体系, 茎间薄层

Abstract: INTRODUCTION Chrysanthemum × morifolium is one of the ten most famous traditional flowers in China, and it has a rich variety of cultivars with diverse floral colour and shapes. However, varieties with blue floral colour have not been found in the natural chrysanthemum, therefore, breeding blue chrysanthemums has always been a goal pursued by researchers. RATIONALE The total flavonoid extract of C. × morifolium ‘Wandai Fengguang’ could turn blue when adding appropriate concentration of Fe3+, and its living petal cells could also turn blue with the participation of Fe3+, which proved the feasibility of breeding blue chrysanthemums with Fe3+. Meanwhile, C. × morifolium ‘Wandai Fengguang’ can bloom both in summer and autumn, with early flowering and long flowering period, which is also an important material for the study of flowering period. Therefore, in order to cultivate blue chrysanthemums and achieve the targeted improvement of flowering period, it is particularly important to establish an efficient and stable regeneration and genetic transformation system for the C. × morifolium ‘Wandai Fengguang’. However, chrysanthemum has a long history of cultivation and complex genetic background, so the regeneration and genetic transformation system is not universal among different varieties.RESULTS In this study, C. × morifolium ‘Wandai Fengguang’ was used as the experimental material to study the effects of different explant types with different combinations of plant growth regulators on its regeneration, and to investigate the effects of relevant factors on the efficiency of genetic transformation with the Agrobacterium-mediated genetic transformation method. The experimental results showed that the most suitable explants for the regeneration of C. × morifolium ‘Wandai Fengguang’ was the transverse thin cell layers (tTCLs), and the optimal culture medium was MS+1.5 mg∙L-1 6-BA+0.6 mg∙L-1 NAA. The highest differentiation rate was 70.06% and an adventitious bud coefficient was 3.37. The kanamycin selection pressures for the differentiation of the tTCLs and the adventitious bud rooting were 7.5 mg∙L-1 and 5.0 mg∙L-1, respectively. The optimal procedure for genetic transformation was pre-culture for 1 day, OD600=0.8, treatment for 5 minutes, and co-culture in the dark for 3 days. Fifteen resistant plantlets were screened on kanamycin medium, and two positive plantlets were confirmed by PCR amplification, with a transformation efficiency of 13.33%.CONCLUSION This study laid the foundation for the gene function analysis and targeted improvement molecular breeding of chrysanthemum by using this kind of unique variety resource, and provided reference for the establishment of regeneration and transformation system for other chrysanthemum varieties.

Key words: chrysanthemum, explant, genetic transformation system, regeneration system, transverse thin cell layers