植物学报 ›› 2024, Vol. 59 ›› Issue (2): 245-256.DOI: 10.11983/CBB23084 cstr: 32102.14.CBB23084
武晓云, 廖敏凌, 李雪茹, 舒梓淳, 辛佳潼, 张伯晗, 戴思兰*()
收稿日期:
2023-06-25
接受日期:
2023-09-19
出版日期:
2024-03-10
发布日期:
2024-03-10
通讯作者:
* 戴思兰, 北京林业大学园林学院教授、博士生导师, 享受国务院政府特殊津贴。现任国家林业和草原局菊花产业国家创新联盟理事长, 中国风景园林学会菊花分会副理事长, 《植物学报》责任编委。曾获首届全国林业教学名师、宝钢优秀教师奖、中国观赏园艺特别荣誉奖、教育部自然科学二等奖等荣誉奖励。先后主持30余项国家和省部级科研项目, 发表学术论文380余篇, 出版著作2部。其研究团队以菊花为主要研究材料, 从菊花的历史文化、品种资源收集、整理和评价到花色、花型、开花期和抗逆性等观赏品质形成的遗传调控机理, 以及菊花优异新种质创制、产业化栽培技术等进行全面研究, 取得了一系列重要突破性进展和研究成果。E-mail: 基金资助:
Xiaoyun Wu, Minling Liao, Xueru Li, Zichun Shu, Jiatong Xin, Bohan Zhang, Silan Dai*()
Received:
2023-06-25
Accepted:
2023-09-19
Online:
2024-03-10
Published:
2024-03-10
Contact:
* E-mail: 摘要: 毛华菊(Chrysanthemum vestitum)是栽培菊花(C. × morifolium)的近缘六倍体野生种之一, 其自然群体中的舌状花与栽培菊花一样具有典型的平瓣型、管瓣型和混合瓣型变异, 是研究菊属植物瓣型变异的理想材料。其舌状花发育过程受生长素和花器官发育关键差异基因的影响, 但目前缺乏稳定高效的不同瓣型毛华菊株系的再生体系, 制约了毛华菊瓣型相关基因的研究。利用在河南省伏牛山收集的3种瓣型毛华菊株系, 以叶片和茎间薄层为外植体建立再生体系。结果表明, 以平瓣型叶片为外植体, 其愈伤组织诱导和不定芽分化最佳培养基为MS+1 mg∙L-1 NAA+2 mg∙L-1 6-BA, 接种20天愈伤组织诱导率为100%, 不定芽分化率达100%; 最佳生根培养基为1/2MS+0.2 mg∙L-1 NAA, 生根率达100%。平瓣型毛华菊的叶片最佳再生体系也适用于管瓣型和混合瓣型株系, 不定芽分化率分别为83.46%和91.67%, 生根率均为100%。移栽后对开花植株进行观察, 发现利用叶片再生体系获得的3种不同瓣型再生植株花型稳定, 为后续利用不同瓣型株系解析舌状花形态变异机理提供了技术方法。
武晓云, 廖敏凌, 李雪茹, 舒梓淳, 辛佳潼, 张伯晗, 戴思兰. 毛华菊3种瓣型株系再生体系的建立. 植物学报, 2024, 59(2): 245-256.
Xiaoyun Wu, Minling Liao, Xueru Li, Zichun Shu, Jiatong Xin, Bohan Zhang, Silan Dai. Establishment of Regeneration System of Chrysanthemum vestitum with Three Floret Forms. Chinese Bulletin of Botany, 2024, 59(2): 245-256.
图1 毛华菊3种瓣型野生型株系的头状花序 (A) 平瓣型头状花序; (B) 管瓣型头状花序; (C) 混合瓣型头状花序。Bars=1 cm
Figure 1 Capitula of wild-type strains of Chrysanthemum vestitum with three floret forms (A) Capitulum with a flat floret form; (B) Capitulum with a tubular floret form; (C) Capitulum with a mixed floret form. Bars=1 cm
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
A1 | 0.5 | 1 |
A2 | 0.5 | 2 |
A3 | 0.5 | 3 |
A4 | 1 | 1 |
A5 | 1 | 2 |
A6 | 1 | 3 |
A7 | 2 | 1 |
A8 | 2 | 2 |
A9 | 2 | 3 |
表1 毛华菊平瓣型株系叶片愈伤组织诱导和不定芽分化培养基配方
Table 1 Culture medium settings for callus induction and adventitious buds differentiation of leaves of Chrysanthemum vestitum with flat floret form
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
A1 | 0.5 | 1 |
A2 | 0.5 | 2 |
A3 | 0.5 | 3 |
A4 | 1 | 1 |
A5 | 1 | 2 |
A6 | 1 | 3 |
A7 | 2 | 1 |
A8 | 2 | 2 |
A9 | 2 | 3 |
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
M1 | 0.1 | 0.1 |
M2 | 0.5 | 0.1 |
M3 | 1 | 0.1 |
M4 | 2 | 0.1 |
M5 | 0.1 | 0.5 |
M6 | 0.5 | 0.5 |
M7 | 1 | 0.5 |
M8 | 2 | 0.5 |
M9 | 0.1 | 1 |
M10 | 0.5 | 1 |
M11 | 1 | 1 |
M12 | 2 | 1 |
M13 | 0.1 | 2 |
M14 | 0.5 | 2 |
M15 | 1 | 2 |
M16 | 2 | 2 |
表2 毛华菊平瓣型株系茎间薄层愈伤组织诱导和不定芽分化培养基配方
Table 2 Culture medium settings for callus induction and adventitious buds differentiation in the transverse thin cell layer of Chrysanthemum vestitum with flat floret form
No. | NAA (mg∙L-1) | 6-BA (mg∙L-1) |
---|---|---|
M1 | 0.1 | 0.1 |
M2 | 0.5 | 0.1 |
M3 | 1 | 0.1 |
M4 | 2 | 0.1 |
M5 | 0.1 | 0.5 |
M6 | 0.5 | 0.5 |
M7 | 1 | 0.5 |
M8 | 2 | 0.5 |
M9 | 0.1 | 1 |
M10 | 0.5 | 1 |
M11 | 1 | 1 |
M12 | 2 | 1 |
M13 | 0.1 | 2 |
M14 | 0.5 | 2 |
M15 | 1 | 2 |
M16 | 2 | 2 |
No. | Basal medium | NAA (mg∙L-1) |
---|---|---|
R1 | 1/2MS | 0 |
R2 | 1/2MS | 0.2 |
R3 | 1/2MS | 0.5 |
表3 生根培养基配方
Table 3 Rooting medium settings
No. | Basal medium | NAA (mg∙L-1) |
---|---|---|
R1 | 1/2MS | 0 |
R2 | 1/2MS | 0.2 |
R3 | 1/2MS | 0.5 |
Treatments | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient |
---|---|---|---|
A1 | 100.00±0 a | 62.50±1.29 b | 3.24±0.94 b |
A2 | 100.00±0 a | 72.92±1.67 ab | 3.82±1.29 a |
A3 | 100.00±0 a | 91.37±2.31 a | 2.05±1.67 cd |
A4 | 100.00±0 a | 89.58±2.05 ab | 4.08±1.26 a |
A5 | 100.00±0 a | 91.67±2.87 a | 4.34±2.34 a |
A6 | 100.00±0 a | 75.00±0.96 ab | 2.40±2.16 bc |
A7 | 97.92±0.37 a | 87.50±1.12 ab | 2.31±1.53 d |
A8 | 97.92±0.37 a | 77.08±2.11 ab | 3.04±1.21 cd |
A9 | 100.00±0 a | 89.58±1.77 ab | 3.61±1.46 bc |
表4 不同培养基配方对毛华菊平瓣型株系叶片愈伤组织诱导和不定芽分化的影响
Table 4 Effects of different medium settings on callus induction and adventitious bud differentiation of leaves of Chrysanthemum vestitum with flat floret form
Treatments | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient |
---|---|---|---|
A1 | 100.00±0 a | 62.50±1.29 b | 3.24±0.94 b |
A2 | 100.00±0 a | 72.92±1.67 ab | 3.82±1.29 a |
A3 | 100.00±0 a | 91.37±2.31 a | 2.05±1.67 cd |
A4 | 100.00±0 a | 89.58±2.05 ab | 4.08±1.26 a |
A5 | 100.00±0 a | 91.67±2.87 a | 4.34±2.34 a |
A6 | 100.00±0 a | 75.00±0.96 ab | 2.40±2.16 bc |
A7 | 97.92±0.37 a | 87.50±1.12 ab | 2.31±1.53 d |
A8 | 97.92±0.37 a | 77.08±2.11 ab | 3.04±1.21 cd |
A9 | 100.00±0 a | 89.58±1.77 ab | 3.61±1.46 bc |
Treatments | Callus formation rate (%) | Differentiation rate (%) |
---|---|---|
M1 | 80.00±7.12 b | 0.28±0.06 b |
M2 | 100.00±0.00 a | 0.49±0.08 a |
M3 | 87.33±2.62 b | 0.31±0.70 b |
M4 | 83.76±2.47 b | 0.15±0.40 bd |
M5 | 64.80±1.47 bc | 0.09±0.70 bc |
M6 | 77.93±3.93 b | 0.20±0.08 b |
M7 | 72.67±9.53 bc | 0.19±0.02 bc |
M8 | 81.76±2.68 b | 0.21±0.09 b |
M9 | 70.53±3.45 bc | 0.27±0.05 bc |
M10 | 78.76±2.78 b | 0.27±0.05 b |
M11 | 78.76±3.21 b | 0.32±0.17 b |
M12 | 90.60±2.30 ab | 0.37±0.13 b |
M13 | 53.06±9.69 bcd | 0.02±0.03 bcd |
M14 | 73.87±5.53 b | 0.03±0.05 bcd |
M15 | 50.33±5.44 bcd | 0.07±0.10 bcd |
M16 | 75.77±5.86 b | 0.03±0.05 bc |
表5 不同培养基配方对毛华菊平瓣型株系茎间薄层愈伤组织诱导和不定芽分化的影响
Table 5 Effects of different medium settings on callus induction and adventitious bud differentiation in transverse thin cell layers of Chrysanthemum vestitum with flat floret form
Treatments | Callus formation rate (%) | Differentiation rate (%) |
---|---|---|
M1 | 80.00±7.12 b | 0.28±0.06 b |
M2 | 100.00±0.00 a | 0.49±0.08 a |
M3 | 87.33±2.62 b | 0.31±0.70 b |
M4 | 83.76±2.47 b | 0.15±0.40 bd |
M5 | 64.80±1.47 bc | 0.09±0.70 bc |
M6 | 77.93±3.93 b | 0.20±0.08 b |
M7 | 72.67±9.53 bc | 0.19±0.02 bc |
M8 | 81.76±2.68 b | 0.21±0.09 b |
M9 | 70.53±3.45 bc | 0.27±0.05 bc |
M10 | 78.76±2.78 b | 0.27±0.05 b |
M11 | 78.76±3.21 b | 0.32±0.17 b |
M12 | 90.60±2.30 ab | 0.37±0.13 b |
M13 | 53.06±9.69 bcd | 0.02±0.03 bcd |
M14 | 73.87±5.53 b | 0.03±0.05 bcd |
M15 | 50.33±5.44 bcd | 0.07±0.10 bcd |
M16 | 75.77±5.86 b | 0.03±0.05 bc |
图2 毛华菊平瓣型株系叶片再生过程 从左至右分别为刚接入分化培养基的叶片(0天)、切口边缘膨大的叶片(7天)、叶片诱导的愈伤组织(15天)、不定芽芽点(30天)、长至0.5 cm的不定芽(45天)及接入生根培养基10天的不定芽。Bar=1 cm
Figure 2 The flat floret regeneration phase for leaves in Chrysanthemum vestitum From left to right are leaves that had just been added to the differentiation medium (0 d), leaf blades with swollen edges (7 d), leaf-induced calli (15 d), adventitious points (30 d), adventitious buds up to 0.5 cm (45 d), and adventitious buds inserted into the rooting medium for 10 days, respectively. Bar=1 cm
图3 毛华菊平瓣型株系茎间薄层与叶片的再生状况 (A)-(D) 茎间薄层在分化培养基中培养7、15、20和35天的分化情况; (E)-(G) 叶片在分化培养基中培养7、15和20天的分化情况; (H) 移入生根培养基15天后叶片再生芽的情况。Bars=1 cm
Figure 3 Regeneration of transverse thin cell layers (tTCLs) and leaves of Chrysanthemum vestitum with a flat floret (A)-(D) Regeneration system of tTCLs in differentiation media for 7, 15, 20, and 35 days; (E)-(G) Regeneration system of leaves in differentiation media for 7, 15, and 20 days; (H) Plant status of regeneration buds from leaves after 15 days transplanting into a rooting medium. Bars=1 cm
No. | Rooting rate (%) | Number of roots | Average root length (cm) | Average plant height (cm) |
---|---|---|---|---|
R1 | 79.17 | 2.21±1.15 a | 4.11±2.16 b | 3.05±0.72 a |
R2 | 100.00 | 1.96±1.54 a | 7.65±3.24 a | 3.16±1.01 a |
R3 | 95.83 | 2.04±2.26 a | 4.37±1.80 b | 2.60±1.26 b |
表6 毛华菊平瓣型株系在不同生根培养基中的生根和植株生长情况
Table 6 Rooting and plant status of Chrysanthemum vestitum with a flat floret in different rooting medium
No. | Rooting rate (%) | Number of roots | Average root length (cm) | Average plant height (cm) |
---|---|---|---|---|
R1 | 79.17 | 2.21±1.15 a | 4.11±2.16 b | 3.05±0.72 a |
R2 | 100.00 | 1.96±1.54 a | 7.65±3.24 a | 3.16±1.01 a |
R3 | 95.83 | 2.04±2.26 a | 4.37±1.80 b | 2.60±1.26 b |
图4 毛华菊平瓣型株系再生苗在R1 (A)、R2 (B)和R3 (C)培养基中培养15天的生根情况 R1-R3同表3。Bars=1 cm
Figure 4 Rooting status of regenerated seedlings from Chrysanthemum vestitum with a flat floret in R1 (A), R2 (B), and R3 (C) media for 15 days R1-R3 are the same as shown in Table 3. Bars=1 cm
Floret form | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient | Rooting rate (%) |
---|---|---|---|---|
Flat | 100.00±0.00 | 100.00±2.05 | 3.59±2.46 | 100.00 |
Tubular | 100.00±0.00 | 83.46±6.59 | 1.75±0.25 | 100.00 |
Mix | 100.00±0.00 | 91.67±2.87 | 4.34±2.34 | 100.00 |
表7 毛华菊3种瓣型株系叶片再生体系
Table 7 Leaf regeneration systems of Chrysanthemum vesititum with three floret forms
Floret form | Callus formation rate (%) | Differentiation rate (%) | Average reproduction coefficient | Rooting rate (%) |
---|---|---|---|---|
Flat | 100.00±0.00 | 100.00±2.05 | 3.59±2.46 | 100.00 |
Tubular | 100.00±0.00 | 83.46±6.59 | 1.75±0.25 | 100.00 |
Mix | 100.00±0.00 | 91.67±2.87 | 4.34±2.34 | 100.00 |
图5 毛华菊管瓣型和混合瓣型株系叶片再生过程 (A) 管瓣型株系叶片再生过程; (B) 混合瓣型株系叶片再生过程。从左至右分别为刚接入分化培养基的叶片(0天)、切口边缘膨大的叶片(7天)、叶片诱导的愈伤组织(15天)、不定芽芽点(30天)、长至0.5 cm的不定芽(45天)和接入生根培养基10天的不定芽。Bars=1 cm
Figure 5 The regeneration phase of leaf of Chrysanthemum vesititum in the presence of tubular and mixed floret forms (A) The regeneration phase of leaves by tubular floret forms; (B) The regeneration phase of leaves by mixed floret forms. From left to right are leaves that had just been added to the differentiation medium (0 d), leaf blades with swollen edges (7 d), leaf-induced calli (15 d), adventitious points (30 d), adventitious buds up to 0.5 cm (45 d), and adventitious buds inserted into the rooting medium for 10 days, respectively. Bars=1 cm
图6 毛华菊3种瓣型野生型株系与再生植株的头状花序 (A1)-(A3) 平瓣型、管瓣型和混合瓣型野生型株系的花序; (B1)-(B3) 平瓣型、管瓣型和混合瓣型再生植株的花序。Bars=1 cm
Figure 6 Capitula of wild-type plants and regenerated plants of Chrysanthemum vestitum with three floret forms (A1)-(A3) Capitula of wild-type strains with flat, tubular and mixed floret forms; (B1)-(B3) Capitula of regenerated plants with flat, tubular and mixed floret forms. Bars=1 cm
[1] |
Annadana S, Rademaker W, Ramanna M, Udayakumar M, de Jong J (2000). Response of stem explants to screening and explant source as a basis for methodical advancing of regeneration protocols for chrysanthemum. Plant Cell Tissue Organ Cult 62, 47-55.
DOI URL |
[2] |
Aswath CR, Mo SY, Kim SH, Kim DH (2004). IbMADS 4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendrathema grandiflora (Ramat.) Kitamura). Plant Sci 166, 847-854.
DOI URL |
[3] |
Chakrabarty D, Mandal AKA, Datta SK (1999). Management of chimera through direct shoot regeneration from florets of chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotechnol 74, 293-296.
DOI URL |
[4] | Chen H, Mo LW, Wang ZF, Wang YC, Chen YZ, Zhang W, Song XQ, Meng XY (2023). Establishment of tissue culture and plant regeneration system of ‘Zhenfen’ Chrysanthemum morifolium. Mol Plant Breed 21, 1633-1640. (in Chinese) |
陈好, 莫丽文, 王泽峰, 王亚沉, 陈英转, 张雯, 宋希强, 孟新亚 (2023). 地被菊花‘珍粉’组织培养与植株再生体系的建立. 分子植物育种 21, 1633-1640. | |
[5] | Chen H, Wang YF, Chen SM, Liu SY, Teng NJ, Lan W, Chen FD (2009). Study on tissue culture of five wild species closely related to Dendranthema × grandiflorum. J Nanjing Agric Univ 32, 30-35. (in Chinese) |
晨卉, 王艳芳, 陈素梅, 刘思余, 滕年军, 兰伟, 陈发棣 (2009). 五种菊花近缘植物组织培养研究. 南京农业大学学报 32, 30-35. | |
[6] | Chen PY (2010). Study on Regeneration of Chrysanthemum koraiense Nakai. Master’s thesis. Dalian: Liaoning Normal University. pp. 17-28. (in Chinese) |
陈鹏彦 (2010). 朝鲜野菊再生系统建立的研究. 硕士论文. 大连: 辽宁师范大学. pp. 17-28. | |
[7] | Dai SL, Chen JY (1997). A cladistic study on some Dendranthema spp. in China. Wuhan Bot Res J 15, 27-34. (in Chinese) |
戴思兰, 陈俊愉 (1997). 中国菊属一些种的分支分类学研究. 武汉植物学研究 15, 27-34. | |
[8] | Dai SL, Chen JY, Li WB (1998). Application of RAPD analysis in the study on the origin of Chinese cultivated chrysanthemum. Acta Bot Sin 40, 1053-1059. (in Chinese) |
戴思兰, 陈俊愉, 李文彬 (1998). 菊花起源的RAPD分析. 植物学报 40, 1053-1059. | |
[9] | Dai SL, Wang WK, Huang JP (2002). Advances of researches on phylogeny of Dendranthema and origin of chrysanthemum. J Beijing For Univ 24(5), 230-234. (in Chinese) |
戴思兰, 王文奎, 黄家平 (2002). 菊属系统学及菊花起源的研究进展. 北京林业大学学报 24(5), 230-234. | |
[10] | Dai SL, Zhong Y, Zhang XY (1995). Study on numerical taxonomy of some Chinese species of Dendranthema (DC) Des Moul. J Beijing For Univ 17(4), 9-15. (in Chinese) |
戴思兰, 钟扬, 张晓艳 (1995). 中国菊属植物部分种的数量分类研究. 北京林业大学学报 17(4), 9-15. | |
[11] | Ding XX (2018). Study progress of tissue culture regeneration system of chrysanthemum. J Liaoning For Sci Tech (4), 64-65, 68. (in Chinese) |
丁晓霞 (2018). 菊花组培再生体系研究进展. 辽宁林业科技 (4), 64-65, 68. | |
[12] | Editorial Committee of the Floral of China, Chinese Academy of Sciences(1983). Floral of China, Vol. 76. Beijing: Science Press. pp. 29-42. (in Chinese) |
中国科学院中国植物志编辑委员会(1983). 中国植物志, 第76卷. 北京: 科学出版社. pp. 29-42. | |
[13] | Fan GX (2017). Transcriptome Analysis of Ray Floret Variation in Chrysanthemum vestitum. Master’s thesis. Beijing: Beijing Forestry University. pp. 20-21. (in Chinese) |
樊光迅 (2017). 毛华菊舌状花形态变异的转录组分析. 硕士论文. 北京: 北京林业大学. pp. 20-21. | |
[14] | Fan GX, Qi S, Wang WK, Dai SL (2016). Mathematical analysis of morphological traits of Chrysanthemum vestitum. Advances in Ornamental Horticulture of China 2016. Changsha: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 134-141. (in Chinese) |
樊光迅, 亓帅, 王文奎, 戴思兰 (2016). 毛华菊形态性状变异的数学分析. 中国观赏园艺研究进展2016. 长沙: 中国园艺学会观赏园艺专业委员会. pp. 134-141. | |
[15] | Fu JX, Zhao C, Wang Y, Dai SL (2012). Establishing an in vitro regeneration system from hypocotyls of Chrysanthemum lavandulifolium. J Beijing For Univ 34(3), 91-96. (in Chinese) |
付建新, 张超, 王翊, 戴思兰 (2012). 甘菊下胚轴离体再生体系的建立. 北京林业大学学报 34(3), 91-96. | |
[16] | Gao YK, Zhao B, Ding GX, Zhang QX (2001). Shoot regeneration from stem and leaf explant of Dendrathema grandiflorum. J Beijing For Univ 23, 32-33. (in Chinese) |
高亦珂, 赵勃, 丁国勋, 张启翔 (2001). 菊花茎叶外植体再生体系的研究. 北京林业大学学报 23, 32-33. | |
[17] | Han KT, Wang J, Dai SL (2009). Adventitious shoot regeneration from internode transverse thin cell layers of cut spray chrysanthemum. J Beijing For Univ 31, 102-107. (in Chinese) |
韩科厅, 王娟, 戴思兰 (2009). 多头切花菊横切薄层不定芽再生的研究. 北京林业大学学报 31, 102-107. | |
[18] | Hill GP (1968). Shoot formation in tissue cultures of Chrysanthemum ‘Bronze Pride’. Physiol Plant 21, 386-389. |
[19] |
Kaul V, Miller RM, Hutchinson JF, Richards D (1990). Shoot regeneration from stem and leaf explants of Dendranthema grandiflora Tzvelev (syn.Chrysanthemum morifolium Ramat.). Plant Cell Tissue Organ Cult 21, 21-30.
DOI URL |
[20] |
Ledger SE, Deroles SC, Given NK (1991). Regeneration and Agrobacterium-mediated transformation of chrysanthemum. Plant Cell Rep 10, 195-199.
DOI PMID |
[21] | Li YJ, Li Y, Huang H, Dai SL (2018). Establishment of an efficient regeneration system for the cut flower Chrysanthemum ‘Fenguiren’. Advances in Ornamental Horticulture of China 2018. Harbin: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 427-434. (in Chinese) |
李亚军, 李悦, 黄河, 戴思兰 (2018). 切花菊‘粉贵人’高效再生体系的建立. 中国观赏园艺研究进展2018. 哈尔滨: 中国园艺学会观赏园艺专业委员会. pp. 427-434. | |
[22] | Liao ML, Pu Y, Wu XY, Ma CF, Wang WK, Dai SL (2023). Establishment of regeneration system of Chrysanthemum indicum in Pingtan with various ligulate floret forms. Chin Bull Bot 58, 449-460. (in Chinese) |
廖敏凌, 蒲娅, 武晓云, 马朝峰, 王文奎, 戴思兰 (2023). 平潭野菊混合瓣型株系再生体系的建立. 植物学报 58, 449-460. | |
[23] | Liu QQ, Dai SL (2007). Application of cytology methods on researches on chrysanthemum origin and Dendranthema spp. evolution. Nonwood For Res 25(3), 86-89. (in Chinese) |
刘倩倩, 戴思兰 (2007). 细胞学在探讨菊花起源与菊属植物进化中的应用. 经济林研究 25(3), 86-89. | |
[24] | Liu YT, Huang H, Ye F, Dai SL (2018). The construction of regeneration system for hypocotyl of Senecio cruentus. Advances in Ornamental Horticulture of China 2018. Harbin: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 493-501. (in Chinese) |
刘钰婷, 黄河, 叶繁, 戴思兰 (2018). 瓜叶菊下胚轴再生体系的建立. 中国观赏园艺研究进展2018. 哈尔滨: 中国园艺学会观赏园艺专业委员会. pp. 493-501. | |
[25] | Luo H, Wen XH, Zhou YY, Dai SL (2020). Establishment of in vitro regeneration system of Helenium aromaticum. Chin Bull Bot 55, 318-328. (in Chinese) |
罗虹, 温小蕙, 周圆圆, 戴思兰 (2020). 芳香堆心菊离体再生体系的建立. 植物学报 55, 318-328.
DOI |
|
[26] | Luo YL, Huang H, Lian L, Dai SL (2017). The construction of regeneration system for the ray floret of Senecio cruentus. Advances in Ornamental Horticulture of China 2017. Chengdu: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 252-259. (in Chinese) |
罗怡柳, 黄河, 连璐, 戴思兰 (2017). 瓜叶菊舌状花再生体系的建立. 中国观赏园艺研究进展2017. 成都: 中国园艺学会观赏园艺专业委员会. pp. 252-259. | |
[27] |
Ma YP, Chen MM, Wei JX, Zhao L, Liu PL, Dai SL, Wen J (2016). Origin of Chrysanthemum cultivars—evidence from nuclear low-copy LFY gene sequences. Biochem Syst Ecol 65, 129-136.
DOI URL |
[28] |
Ma YP, Zhao L, Zhang WJ, Zhang YH, Xing X, Duan XX, Hu J, Harris A, Liu PL, Dai SL, Wen J (2020). Origins of cultivars of Chrysanthemum—evidence from the chloroplast genome and nuclear LFY gene. J Syst Evol 58, 925-944.
DOI URL |
[29] | Mao HY, Zhou Y, Liu D, Jia HM (2015). Establishment of receptor and genetic transformation system of ground- cover chrysanthemum ‘China Red’. J Shenyang Agric Univ 46, 672-677. (in Chinese) |
毛洪玉, 周杨, 刘迪, 贾红梅 (2015). 地被菊‘中国红’再生及遗传转化体系的建立. 沈阳农业大学学报 46, 672-677. | |
[30] | Pu Y (2023). Molecular Mechanism of Auxin Regulation on Morphological Difference of Ray Florets in Chrysanthemum vestitum. Doctoral dissertation. Beijing: Beijing Forestry University. pp. 17-23. (in Chinese) |
蒲娅 (2023). 生长素调控毛华菊舌状花形态差异的分子机制. 博士论文. 北京: 北京林业大学. pp. 17-23. | |
[31] |
Pu Y, Huang H, Wen XH, Lu CF, Zhang BH, Gu XQ, Qi S, Fan GX, Wang WK, Dai SL (2020). Comprehensive transcriptomic analysis provides new insights into the mechanism of ray floret morphogenesis in chrysanthemum. BMC Genomics 21, 728.
DOI PMID |
[32] |
Pu Y, Liao ML, Li JZ, Tian YK, Wang ZM, Song X, Dai SL (2023). Floral development stage-specific transcriptomic analysis reveals the formation mechanism of different shapes of ray florets in chrysanthemum. Genes 14, 766.
DOI URL |
[33] | Ren JS, Gu XQ, Pu Y, Huang H (2021). Establishment of regeneration system for the ray floret of Chrysanthemum indicum var. huludoensis. Mod Hortic 44(24), 3-4, 7. (in Chinese) |
任江珊, 顾雪琪, 蒲娅, 黄河 (2021). 葫芦岛野菊舌状花再生体系建立. 现代园艺 44(24), 3-4, 7. | |
[34] |
Renou JP, Brochard P, Jalouzot R (1993). Recovery of transgenic chrysanthemum (Dendranthema grandiflora Tzvelev) after hygromycin resistance selection. Plant Sci 89, 185-197.
DOI URL |
[35] |
Rout GR, Das P (1997). Recent trends in the biotechnology of Chrysanthemum: a critical review. Sci Hortic 69, 239-257.
DOI URL |
[36] |
Song XB, Gao K, Fan GX, Zhao XG, Liu ZL, Dai SL (2018). Quantitative classification of the morphological traits of ray florets in large-flowered chrysanthemum. HortScience 53, 1258-1265.
DOI URL |
[37] | Song XB, Xu YH, Gao K, Fan GX, Zhang F, Deng CY, Dai SL, Huang H, Xin HG, Li YY (2020). High-density genetic map construction and identification of loci controlling flower-type traits in chrysanthemum (Chrysanthemum × morifolium Ramat.). Hortic Res 7, 108. |
[38] |
Tanaka K, Kanno Y, Kudo S, Suzuki M (2000). Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep 19, 946-953.
DOI PMID |
[39] | Tang ZH (1963). A study of the classification of Chinese chrysanthemums. Acta Hortic 2, 411-420. (in Chinese) |
汤忠皓 (1963). 中国菊花品种分类的探讨. 园艺学报 2, 411-420. | |
[40] |
Teixeira da Silva JA (2003). Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum. Plant Growth Regul 39, 67-76.
DOI URL |
[41] | Wang WK, Zhou CL, Dai SL (1999). Flower morphological variation of Dendranthema vestitum. J Beijing For Univ 21(3), 92-95. (in Chinese) |
王文奎, 周春玲, 戴思兰 (1999). 毛华菊花朵形态变异. 北京林业大学学报 21(3), 92-95. | |
[42] | Wang ZB, Mo GX, Luo HL, Zhang DY (2015). Research of tissue culture and regenerated of the different explants of Chrysanthemum indicum L. North Hortic (18), 106-109. (in Chinese) |
王自布, 莫国秀, 罗会兰, 张德英 (2015). 菊花不同外植体组培快繁及其再生体系的研究. 北方园艺 (18), 106-109. | |
[43] | Wu XY, Wen XH, Ma CF, Dai SL (2018). Rapid induction of plant regeneration from leaf of Chrysanthemum lanvandulifolium. Advances in Ornamental Horticulture of China 2018. Harbin: Ornamental Horticulture Professional Committee, Chinese Society for Horticultural Science. pp. 461-468. (in Chinese) |
武晓云, 温小蕙, 马朝峰, 戴思兰 (2018). 快速诱导甘菊叶片再生植株的方法. 中国观赏园艺研究进展2018. 哈尔滨: 中国园艺学会观赏园艺专业委员会. pp. 461-468. | |
[44] | Wu ZP, Gao YK, Fan M, Gao YH (2020). Construction of regeneration and transformation system of Chrysanthemum ‘Jinbudiao’. Mol Plant Breed 18, 150-158. (in Chinese) |
吴志苹, 高亦珂, 范敏, 高耀辉 (2020). 菊花‘金不凋’再生及遗传转化体系的构建. 分子植物育种 18, 150-158. | |
[45] | Xu YX (2005). Analysis on Morphological Diversity and Classification of Chrysanthemum. Master’s thesis. Beijing: Beijing Forestry University. pp. 23-36. (in Chinese) |
许莹修 (2005). 菊花形态性状多样性和品种分类的研究. 硕士论文. 北京: 北京林业大学. pp. 23-36. | |
[46] |
Yepes LM, Mittak V, Pang SZ, Gonsalves C, Slightom JL, Gonsalves D (1995). Biolistic transformation of chrysanthemum with the nucleocapsid gene of tomato spotted wilt virus. Plant Cell Rep 14, 694-698.
DOI PMID |
[47] | Zhang SL (1965). Studies on the classification of garden varieties of florist’s chrysanthemum. Acta Hortic 4, 35-46, 61-62. |
张树林 (1965). 菊花品种分类的研究. 园艺学报 4, 35-46, 61-62. | |
[48] | Zhou J (2009). Studies on the Problem of Origin of Chinese Garden Chrysanthemum. Doctoral dissertation. Beijing: Beijing Forestry University. pp. 31-36, 109-113. |
周杰 (2009). 关于中国菊花起源问题的若干实验研究. 博士论文. 北京: 北京林业大学. pp. 31-36, 109-113. |
[1] | 陈香蕾 崔树娟 赵晨军 顾洪亮 陈晓萍 李锦隆 孙俊. 基于叶片分类的木本植物单叶片面积预测模型[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨文丽, 李钊, 刘志铭, 张志华, 杨今胜, 吕艳杰, 王永军. 不同熟期玉米叶片衰老特性及其对叶际细菌的影响[J]. 植物学报, 2024, 59(6): 0-0. |
[3] | 刘玉泽, 王一菲, 任威蓁, 栗浩, 路斌, 路丙社, 于晓跃. 北美豆梨杂种幼胚挽救及再生体系的建立[J]. 植物学报, 2024, 59(5): 800-809. |
[4] | 杨佳丽, 饶羽菲, 张润花, 周国林, 林处发, 何燕红, 宁国贵. 捕虫堇叶片高效再生体系建立[J]. 植物学报, 2024, 59(4): 626-634. |
[5] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[6] | 曾浩, 李佩芳, 郭至辉, 刘春林, 阮颖. 银扇草再生体系的建立[J]. 植物学报, 2024, 59(3): 433-440. |
[7] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[8] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[9] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[10] | 廖敏凌, 蒲娅, 武晓云, 马朝峰, 王文奎, 戴思兰. 平潭野菊混合瓣型株系再生体系的建立[J]. 植物学报, 2023, 58(3): 449-460. |
[11] | 刘向, 刘木, 肖瑶. 叶片病原真菌对植物物种共存的影响: 进展与挑战[J]. 生物多样性, 2023, 31(2): 22525-. |
[12] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[13] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[14] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[15] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||