植物学报 ›› 2023, Vol. 58 ›› Issue (3): 449-460.DOI: 10.11983/CBB22135
廖敏凌1, 蒲娅1, 武晓云1, 马朝峰1, 王文奎2, 戴思兰1()
收稿日期:
2022-06-28
接受日期:
2022-09-26
出版日期:
2023-05-01
发布日期:
2023-05-17
通讯作者:
*E-mail: silandai@sina.com
基金资助:
Minling Liao1, Ya Pu1, Xiaoyun Wu1, Chaofeng Ma1, Wenkui Wang2, Silan Dai1()
Received:
2022-06-28
Accepted:
2022-09-26
Online:
2023-05-01
Published:
2023-05-17
Contact:
*E-mail: silandai@sina.com
摘要: 菊科植物因其丰富的舌状花变异类型而具有很高的观赏价值。野菊(Chrysanthemum indicum)作为栽培菊花(C. × morifolium)的近缘野生种之一, 其自然群体中常具有典型的平瓣、匙瓣及管瓣的舌状花变异类型, 是研究菊科植物瓣型变异的优异材料, 而目前缺乏对其再生体系的研究。在福建平潭岛分布的野菊中发现大量舌状花形态变异植株, 该研究以其混合瓣型株系茎间薄层和叶盘为外植体建立再生体系。结果表明, 以茎间薄层为外植体, 诱导愈伤组织和不定芽分化的最优培养基为MS+1.0 mg∙L-1 6-BA+0.5 mg∙L-1 NAA, 接种14天愈伤组织诱导率可达100%。不定芽平均分化时间为25天, 接种40天不定芽分化率可达82%。最佳生根培养基为1/2MS+0.5 mg∙L-1 NAA, 10天生根。移栽植株全部成活, 植株生长状态良好且均保留了混合瓣型的形态特征。该研究初步建立了平潭野菊混合瓣型株系茎间薄层的离体培养再生体系, 为进一步建立其遗传转化体系奠定了基础, 也为解析菊花瓣型变异机理提供了技术方法。
廖敏凌, 蒲娅, 武晓云, 马朝峰, 王文奎, 戴思兰. 平潭野菊混合瓣型株系再生体系的建立. 植物学报, 2023, 58(3): 449-460.
Minling Liao, Ya Pu, Xiaoyun Wu, Chaofeng Ma, Wenkui Wang, Silan Dai. Establishment of Regeneration System of Chrysanthemum indicum in Pingtan with Various Ligulate Floret Form. Chinese Bulletin of Botany, 2023, 58(3): 449-460.
No. | Basal medium | 6-BA (mg?L-1) | NAA (mg?L-1) |
---|---|---|---|
Y1 | MS | 1.0 | 0.5 |
Y2 | MS | 1.0 | 1.0 |
Y3 | MS | 1.0 | 2.0 |
Y4 | MS | 2.0 | 0.5 |
Y5 | MS | 2.0 | 1.0 |
Y6 | MS | 2.0 | 2.0 |
Y7 | MS | 3.0 | 0.5 |
Y8 | MS | 3.0 | 1.0 |
Y9 | MS | 3.0 | 2.0 |
CK | MS | 0 | 0 |
表1 愈伤组织诱导及不定芽分化培养基配方
Table 1 The composition of the medium for callus induction and adventitious buds differentiation
No. | Basal medium | 6-BA (mg?L-1) | NAA (mg?L-1) |
---|---|---|---|
Y1 | MS | 1.0 | 0.5 |
Y2 | MS | 1.0 | 1.0 |
Y3 | MS | 1.0 | 2.0 |
Y4 | MS | 2.0 | 0.5 |
Y5 | MS | 2.0 | 1.0 |
Y6 | MS | 2.0 | 2.0 |
Y7 | MS | 3.0 | 0.5 |
Y8 | MS | 3.0 | 1.0 |
Y9 | MS | 3.0 | 2.0 |
CK | MS | 0 | 0 |
No. | Basal medium | NAA (mg?L-1 ) | 6-BA (mg?L-1 ) | TDZ (mg?L-1 ) |
---|---|---|---|---|
T1 | MS | 2.0 | 1.0 | 0.1 |
T2 | MS | 2.0 | 1.0 | 0.2 |
T3 | MS | 2.0 | 1.0 | 0.4 |
T4 | MS | 2.0 | 2.0 | 0.1 |
T5 | MS | 2.0 | 2.0 | 0.2 |
T6 | MS | 2.0 | 2.0 | 0.4 |
T7 | MS | 2.0 | 3.0 | 0.1 |
T8 | MS | 2.0 | 3.0 | 0.2 |
T9 | MS | 2.0 | 3.0 | 0.4 |
表2 添加不同浓度TDZ的愈伤组织诱导培养基配方
Table 2 The composition of the medium for callus induction with different concentrations of TDZ
No. | Basal medium | NAA (mg?L-1 ) | 6-BA (mg?L-1 ) | TDZ (mg?L-1 ) |
---|---|---|---|---|
T1 | MS | 2.0 | 1.0 | 0.1 |
T2 | MS | 2.0 | 1.0 | 0.2 |
T3 | MS | 2.0 | 1.0 | 0.4 |
T4 | MS | 2.0 | 2.0 | 0.1 |
T5 | MS | 2.0 | 2.0 | 0.2 |
T6 | MS | 2.0 | 2.0 | 0.4 |
T7 | MS | 2.0 | 3.0 | 0.1 |
T8 | MS | 2.0 | 3.0 | 0.2 |
T9 | MS | 2.0 | 3.0 | 0.4 |
No. | Basal medium | NAA (mg?L-1 ) |
---|---|---|
G1 | 1/2MS | 0.2 |
G2 | 1/2MS | 0.5 |
G3 | 1/2MS | 1.0 |
1/2MS | 1/2MS | 0 |
MS | MS | 0 |
表3 生根诱导培养基配方
Table 3 Formula of rooting medium
No. | Basal medium | NAA (mg?L-1 ) |
---|---|---|
G1 | 1/2MS | 0.2 |
G2 | 1/2MS | 0.5 |
G3 | 1/2MS | 1.0 |
1/2MS | 1/2MS | 0 |
MS | MS | 0 |
图1 平潭野菊舌状花形态变异 (A1) 平瓣型; (A2) 匙瓣型; (A3) 管瓣型; (A4) 混合瓣型; (B1), (B2) 剪绒; (C1), (C2) 燕尾状裂; (D1) 外翻; (D2) 内曲; (E1) 舌状花长度差异; (E2), (E3) 舌状花弯曲程度差异; (E4) 燕尾状裂深度差异; (F1)-(F4) 舌状花数量的差异; (G1)-(G4) 混合瓣型中各瓣型占比差异; (H) 头状花序直径差异。Bars=1 cm
Figure 1 Ray floret variations in Chrysanthemum indicum in Pingtan (A1) Flat type; (A2) Spoon type; (A3) Tubular type; (A4) Mix type; (B1), (B2) Chenille-like; (C1), (C2) Swallowtail-like; (D1) Evaginable; (D2) Incurvate; (E1) Difference in ray floret length; (E2), (E3) Difference in degree of curvature; (E4) Difference in cracking degree; (F1)-(F4) Difference in ray floret number; (G1)-(G4) Difference in proportion of each petal type in mix type; (H) Difference in diameter of capitulum. Bars=1 cm
图2 平潭野菊混合瓣型株系 (A) 植株形态(bar=3.5 cm); (B) 叶片形态(bar=1 cm); (C) 头状花序(bar=1 cm)
Figure 2 Chrysanthemum indicum in Pingtan stains with various ligulate floret form (A) Plant (bar=3.5 cm); (B) Leaf shape (bar=1 cm); (C) Capitulum (bar=1 cm)
Treat-ments | Callus formation rate on the 14th day (%) | Differentiation rate on the 40th day (%) | Treatments | Callus formation rate on the 14th day (%) | ||
---|---|---|---|---|---|---|
Leaves | tTCLs | Leaves | tTCLs | |||
Y1 | 100.00±0.00 a | 100.00±0.00 a | 0 | 82.00±3.46 a | T1 | 100.00±0.00 a |
Y2 | 100.00±0.00 a | 100.00±0.00 a | 0 | 53.50±4.95 c | T2 | 100.00±0.00 a |
Y3 | 100.00±0.00 a | 90.50±4.95 b | 3.71±0.19 b | 33.50±6.36 d | T3 | 97.00±0.04 ab |
Y4 | 100.00±0.00 a | 100.00±0.00 a | 0 | 63.50±4.95 bc | T4 | 83.50±0.06 ab |
Y5 | 100.00±0.00 a | 100.00±0.00 a | 0 | 67.00±5.66 b | T5 | 97.50±0.03 ab |
Y6 | 100.00±0.00 a | 98.50±2.12 a | 9.39±3.35 b | 57.50±0.71 bc | T6 | 87.50±0.09 ab |
Y7 | 100.00±0.00 a | 100.00±0.00 a | 0 | 61.00±1.41 bc | T7 | 81.50±0.05 b |
Y8 | 100.00±0.00 a | 93.50±0.71 b | 0 | 16.50±3.54 e | T8 | 85.00±0.14 ab |
Y9 | 75.48±4.30 b | 98.50±2.12 a | 19.09±1.29 a | 41.00±4.24 d | T9 | 90.00±0.06 ab |
CK | 0.00±0.00 c | 0.00±0.00 c | 0 | 0 | - | - |
表4 不同培养基配方对平潭野菊叶盘及茎间薄层(tTCLs)愈伤组织诱导和不定芽分化的影响
Table 4 Effects of different media on callus induction and adventitious buds differentiation for leaves and transverse thin cell layers (tTCLs) of Chrysanthemum indicum in Pingtan
Treat-ments | Callus formation rate on the 14th day (%) | Differentiation rate on the 40th day (%) | Treatments | Callus formation rate on the 14th day (%) | ||
---|---|---|---|---|---|---|
Leaves | tTCLs | Leaves | tTCLs | |||
Y1 | 100.00±0.00 a | 100.00±0.00 a | 0 | 82.00±3.46 a | T1 | 100.00±0.00 a |
Y2 | 100.00±0.00 a | 100.00±0.00 a | 0 | 53.50±4.95 c | T2 | 100.00±0.00 a |
Y3 | 100.00±0.00 a | 90.50±4.95 b | 3.71±0.19 b | 33.50±6.36 d | T3 | 97.00±0.04 ab |
Y4 | 100.00±0.00 a | 100.00±0.00 a | 0 | 63.50±4.95 bc | T4 | 83.50±0.06 ab |
Y5 | 100.00±0.00 a | 100.00±0.00 a | 0 | 67.00±5.66 b | T5 | 97.50±0.03 ab |
Y6 | 100.00±0.00 a | 98.50±2.12 a | 9.39±3.35 b | 57.50±0.71 bc | T6 | 87.50±0.09 ab |
Y7 | 100.00±0.00 a | 100.00±0.00 a | 0 | 61.00±1.41 bc | T7 | 81.50±0.05 b |
Y8 | 100.00±0.00 a | 93.50±0.71 b | 0 | 16.50±3.54 e | T8 | 85.00±0.14 ab |
Y9 | 75.48±4.30 b | 98.50±2.12 a | 19.09±1.29 a | 41.00±4.24 d | T9 | 90.00±0.06 ab |
CK | 0.00±0.00 c | 0.00±0.00 c | 0 | 0 | - | - |
图3 平潭野菊叶盘在不同培养基中的再生状况 (A) 叶盘在不同培养基中的生长状态; (B) 叶盘在含TDZ培养基中的生长状态。Y1-Y9和CK同表1; T1-T9同表2。Bars=4.5 cm
Figure 3 Regeneration of Chrysanthemum indicum in Pingtan leaves in different media (A) Leaves in different media; (B) Leaves in media with TDZ. Y1-Y9, and CK are the same as in Table 1; T1-T9 are the same as in Table 2. Bars=4.5 cm
图4 平潭野菊叶盘在不同培养基中的不定芽分化 (A) Y3; (B) Y6; (C) Y9。Y3、Y6和Y9同表1。从左到右: 叶盘在不同培养基中培养21、28、35、42和49天的分化状态。Bar=1 cm
Figure 4 Adventitious bud differentiation for leaves of Chrysanthemum indicum in Pingtan in different media (A) Y3; (B) Y6; (C) Y9. Y3, Y6 and Y9 are the same as in Table 1. From left to right: Adventitious bud differentiation of leaves in different media at 21, 28, 35, 42 and 49 d. Bar=1 cm
Treatments | Browning rate on the 21th day (%) | Treat- ments | Browning rate on the 24th day (%) |
---|---|---|---|
Y1 | 83.04±7.92 abcd | T1 | 52.78±3.93 f |
Y2 | 96.43±5.05 a | T2 | 56.08±3.88 ef |
Y3 | 80.36±6.84 bcde | T3 | 81.80±0.78 c |
Y4 | 90.11±8.58 abc | T4 | 72.14±2.18 d |
Y5 | 77.56±3.95 cde | T5 | 89.45±0.78 b |
Y6 | 67.86±9.22 e | T6 | 61.51±0.56 e |
Y7 | 74.22±2.49 de | T7 | 97.50±3.54 a |
Y8 | 42.50±5.00 f | T8 | 100.00±0.00 a |
Y9 | 34.17±1.18 f | T9 | 87.30±2.25 bc |
CK | 92.73±9.50 ab |
表5 平潭野菊叶盘在不同培养基中的褐化率
Table 5 The browning rate for leaves of Chrysanthemum indicum in Pingtan in different media
Treatments | Browning rate on the 21th day (%) | Treat- ments | Browning rate on the 24th day (%) |
---|---|---|---|
Y1 | 83.04±7.92 abcd | T1 | 52.78±3.93 f |
Y2 | 96.43±5.05 a | T2 | 56.08±3.88 ef |
Y3 | 80.36±6.84 bcde | T3 | 81.80±0.78 c |
Y4 | 90.11±8.58 abc | T4 | 72.14±2.18 d |
Y5 | 77.56±3.95 cde | T5 | 89.45±0.78 b |
Y6 | 67.86±9.22 e | T6 | 61.51±0.56 e |
Y7 | 74.22±2.49 de | T7 | 97.50±3.54 a |
Y8 | 42.50±5.00 f | T8 | 100.00±0.00 a |
Y9 | 34.17±1.18 f | T9 | 87.30±2.25 bc |
CK | 92.73±9.50 ab |
图5 平潭野菊茎间薄层在不同培养基中的不定芽分化状况(40天) Y1-Y9同表1。Bar=1 cm
Figure 5 Adventitious bud differentiation of transverse thin cell layers of Chrysanthemum indicum in Pingtan in different media (40 d) Y1-Y9 are the same as in Table 1. Bar=1 cm
图6 平潭野菊不定芽的生根情况及植株状态 (A1)-(E1) 植株状态(0天); (A2)-(E2) 生根状态(10天); (A3)-(E3) 植株状态(26天); (A4)-(E4) 生根状态(26天)。从左至右分别为MS、1/2MS、G1、G2和G3 (同表3)。Bars=1 cm
Figure 6 Rooting and plant status of Chrysanthemum indicum in Pingtan adventitious buds (A1)-(E1) Plant status (0 d); (A2)-(E2) Rooting condition (10 d); (A3)-(E3) Plant status (26 d); (A4)-(E4) Rooting condition (26 d). From left to right: MS, 1/2MS, G1, G2, and G3 (the same as in Table 3). Bars=1 cm
Treat- ments | Time of rooting (d) | Rate of rooting (%) | Average root length (cm) | The situation of root and plant | Number of branches |
---|---|---|---|---|---|
MS | 6 | 66.7 | 12.59±2.60 a | The root system is dense, slender, and long; the plant is weak with branches and small leaves | 3±1 a |
1/2MS | 6 | 100 | 5.49±0.86 b | The root system is sparse and slender; the plant is weak with many branches and small leaves | 6±2 a |
G1 | 14 | 100 | 4.41±0.80 b | The root system is crude and short, with many root hairs; the plant is weak with branches | 4±2 a |
G2 | 10 | 100 | 3.21±2.62 b | The root system is crude and short, with many root hairs; the plant is robust and higher, with larger leaves | 2±1 a |
G3 | 24 | 100 | 3.80±2.22 b | The root system is crude and short, with many root hairs; the plant is robust and highest, with largest leaves | 2±1 a |
表6 平潭野菊不定芽的生根情况和植株状态
Table 6 Rooting and plant status of Chrysanthemum indicum in Pingtan adventitious buds
Treat- ments | Time of rooting (d) | Rate of rooting (%) | Average root length (cm) | The situation of root and plant | Number of branches |
---|---|---|---|---|---|
MS | 6 | 66.7 | 12.59±2.60 a | The root system is dense, slender, and long; the plant is weak with branches and small leaves | 3±1 a |
1/2MS | 6 | 100 | 5.49±0.86 b | The root system is sparse and slender; the plant is weak with many branches and small leaves | 6±2 a |
G1 | 14 | 100 | 4.41±0.80 b | The root system is crude and short, with many root hairs; the plant is weak with branches | 4±2 a |
G2 | 10 | 100 | 3.21±2.62 b | The root system is crude and short, with many root hairs; the plant is robust and higher, with larger leaves | 2±1 a |
G3 | 24 | 100 | 3.80±2.22 b | The root system is crude and short, with many root hairs; the plant is robust and highest, with largest leaves | 2±1 a |
图7 平潭野菊再生植株头状花序及各瓣型占比 (A1), (A2) 移栽后60天生长状态, 从左到右生根培养基分别为MS、1/2MS、G1、G2和G3 (bars=3.5 cm); (B) 再生植株头状花序(bar=1 cm); (C) 平瓣、匙瓣和管瓣在各头状花序舌状花中的占比; (D) 头状花序中各舌状花类型平均占比。MS、1/2MS、G1、G2和G3同表3。
Figure 7 The capitulum of regenerated plants and the proportion of each petal type in Chrysanthemum indicum in Pingtan (A1), (A2) Plant status after transplanting for 60 days, from left to right, their rooting media were MS, 1/2MS, G1, G2, and G3, respectively (bars=3.5 cm); (B) The capitulum of regenerated plants (bar=1 cm); (C) The proportion of flat petals, spoon petals and tubular petals in each capitulum; (D) Average proportion of each petal type in all capitulums. MS, 1/2MS, G1, G2, and G3 are the same as in Table 3.
图8 平潭野菊混合瓣型株系茎间薄层的再生体系 (A), (B) Y1培养基中愈伤组织诱导和不定芽分化; (C) 不定芽生长至0.8 cm; (D), (E) 不定芽在G2培养基中的根系和植株状态; (F), (G) 移栽30天和90天后的植株状态; (H) 现蕾; (I) 再生植株头状花序。Y1同表1; G2同表3。Bars=2 cm
Figure 8 Regeneration system of transverse thin cell layers in Chrysanthemum indicum in Pingtan stains with various ligulate floret forms (A), (B) Callus induction and adventitious bud differentiation in Y1; (C) Adventitious buds grown to 0.8 cm; (D), (E) Rooting and plant status of adventitious buds in G2; (F), (G) Plant status after transplanting for 30 and 90 days; (H) Flower buds; (I) Capitulum of regenerated plant. Y1 is the same as in Table 1; G2 is the same as in Table 3. Bars=2 cm
[1] | 晨卉, 王艳芳, 陈素梅, 刘思余, 滕年军, 兰伟, 陈发棣 (2009). 五种菊花近缘植物组织培养研究. 南京农业大学学报 32, 30-35. |
[2] | 陈鹏彦 (2010). 朝鲜野菊再生系统建立的研究. 硕士论文. 大连: 辽宁师范大学. pp. 17-28. |
[3] | 戴思兰, 陈俊愉, 李文彬 (1998). 菊花起源的RAPD分析. 植物学报 40, 76-82. |
[4] | 戴思兰, 钟杨, 张晓艳 (1995). 中国菊属植物部分种的数量分类研究. 北京林业大学学报 17(4), 9-15. |
[5] | 付建新, 张超, 王翊, 戴思兰 (2012). 甘菊下胚轴离体再生体系的建立. 北京林业大学学报 34, 91-96. |
[6] | 宫明雪 (2019). 野菊CiMYB44基因调控植株垂枝性状的研究. 硕士论文. 哈尔滨: 东北林业大学. pp. 27-33. |
[7] | 韩磊, 吕鑫, 张文静, 杨小霁 (2009). 野菊花蕾的组培与快繁技术研究. 北方园艺 (5), 103-105. |
[8] | 韩正洲 (2017). 野菊资源研究与野菊花药材品质评价. 博士论文. 广州: 广州中医药大学. pp. 29-52. |
[9] | 李梦雨 (2020). 神农香菊CiMYB4基因抗旱性功能验证及RNAi载体构建. 硕士论文. 哈尔滨: 东北林业大学. pp. 22-31. |
[10] | 李娜 (2018). ChiMYB基因转化野菊的研究. 硕士论文. 佳木斯: 佳木斯大学. pp. 24-26. |
[11] | 李亚军, 李悦, 黄河, 戴思兰 (2018). 切花菊‘粉贵人’高效再生体系的建立. 见: 中国观赏园艺研究进展2018. 北京: 中国林业出版社. pp. 427-434. |
[12] | 林镕, 石铸, 傅国勋 (1983). 中国植物志, 第76卷第1分册. 北京: 科学出版社. pp. 29-42. |
[13] | 刘倩倩 (2007). 中国大菊品种形态分类及细胞学研究. 硕士论文. 北京: 北京林业大学. pp. 15-41. |
[14] |
罗虹, 温小蕙, 周圆圆, 戴思兰 (2020). 芳香堆心菊离体再生体系的建立. 植物学报 55, 318-328.
DOI |
[15] | 马晓蓉 (2017). 大别山地区野菊野生资源调查及其活性成分研究. 硕士论文. 南京: 南京农业大学. pp. 31-37. |
[16] | 曲晓慧 (2020). 几种菊属野生植物再生体系的建立. 硕士论文. 南京: 南京农业大学. pp. 11-42. |
[17] | 任江珊, 顾雪琪, 蒲娅, 黄河 (2021). 葫芦岛野菊舌状花再生体系建立. 现代园艺 44(24), 3-4, 7. |
[18] | 汤忠皓 (1963). 中国菊花品种分类的探讨. 园艺学报 2, 411-420. |
[19] | 汪劲武, 杨继, 李懋学 (1993). 野菊和甘菊的形态变异及其核型特征. 植物分类学报 31, 140-146. |
[20] | 王霁佳 (2019). 神农香菊CiMYB4基因的克隆及对野菊的遗传转化. 硕士论文. 哈尔滨: 东北林业大学. pp. 23-32. |
[21] | 王文奎, 周春玲, 戴思兰 (1999). 毛华菊花朵形态变异. 北京林业大学学报 21(3), 92-95. |
[22] | 王想 (2018). 神农香菊单萜合酶基因的克隆及对野菊的遗传转化. 硕士论文. 哈尔滨: 东北林业大学. pp. 34. |
[23] | 武晓云, 温小蕙, 马朝峰, 戴思兰 (2018). 快速诱导甘菊叶片再生植株的方法. 见: 中国观赏园艺研究进展2018. 北京: 中国林业出版社. pp. 461-468. |
[24] | 吴志苹, 高亦珂, 范敏, 高耀辉 (2020). 菊花‘金不凋’再生及遗传转化体系的构建. 分子植物育种 18, 150-158. |
[25] | 肖政 (2009). 菊花离体再生及根癌农杆菌介导CBF1基因遗传转化的研究. 硕士论文. 杨凌: 西北农林科技大学. pp. 16-19. |
[26] | 肖政, 范崇辉, 金万梅 (2009). 生长调节物质对菊花‘小金黄’叶片再生不定芽的影响. 西北林学院学报 24(6), 50-53. |
[27] | 徐晓帆 (2019). 切花菊叶、花形态多样性与关联性分析. 硕士论文. 南京: 南京农业大学. pp. 34-44. |
[28] | 徐晓峰, 黄学林 (2003). TDZ: 一种有效的植物生长调节剂. 植物学通报 20, 227-237. |
[29] | 许莹修 (2005). 菊花形态性状多样性和品种分类的研究. 硕士论文. 北京: 北京林业大学. pp. 23-36. |
[30] | 张树林 (1965). 菊花品种分类的研究. 园艺学报 4, 35-46. |
[31] | 张鲜艳, 张飞, 陈发棣, 郭慧敏, 陈素梅 (2011). 12份不同地理居群野菊的遗传多样性分析. 南京农业大学学报 34(3), 48-54. |
[32] | 郑芳昊 (2012). 野菊花种子质量标准与种苗繁育技术的研究. 硕士论文. 广州: 广州中医药大学. pp. 33-41. |
[33] | 钟声远, 罗宇婷, 赵勇, 王振兴, 管志勇, 房伟民, 陈发棣, 王海滨 (2021). 切花菊品种资源表型多样性分析. 植物资源与环境学报 30(5), 22-33. |
[34] | 周杰 (2009). 关于中国菊花起源问题的若干实验研究. 博士论文. 北京: 北京林业大学. pp. 31-36, 109-113. |
[35] | 周婷, 杨惠婷, 胡计红, 朱梦珠, 洪荣钦, 潘东明, 佘文琴, 陈桂信 (2019). 单头切花菊‘白扇’组培快繁技术. 热带作物学报 40, 715-723. |
[36] |
Liu XW, Xia B, Purente N, Chen B, Zhou YW, He M (2021). Transgenic Chrysanthemum indicum overexpressing cin- miR396a exhibits altered plant development and reduced salt and drought tolerance. Plant Physiol Biochem 168, 17-26.
DOI URL |
[37] |
Ma YP, Chen MM, Wei JX, Zhao L, Liu PL, Dai SL, Wen J (2016). Origin of Chrysanthemum cultivars—evidence from nuclear low-copy LFY gene sequences. Biochem Syst Ecol 65, 129-136.
DOI URL |
[38] |
Ma YP, Zhao L, Zhang WJ, Zhang YH, Xing X, Duan XX, Hu J, Harris AJ, Liu PL, Dai SL, Wen J (2020). Origins of cultivars of Chrysanthemum—evidence from the chloroplast genome and nuclear LFY gene. J Syst Evol 58, 925-944.
DOI URL |
[39] |
Song XB, Gao K, Fan GX, Zhao XG, Liu ZL, Dai SL (2018). Quantitative classification of the morphological traits of ray florets in large-flowered Chrysanthemum. HortScience 53, 1258-1265.
DOI URL |
[40] |
Song XB, Xu YH, Gao K, Fan GX, Zhang F, Deng CY, Dai SL, Huang H, Xin HG, Li YY (2020). High-density genetic map construction and identification of loci controlling flower-type traits in Chrysanthemum (Chrysanthemum × morifolium Ramat.). Hortic Res 7, 108.
DOI |
[1] | 曾浩, 李佩芳, 郭至辉, 刘春林, 阮颖. 银扇草再生体系的建立[J]. 植物学报, 2024, 59(3): 433-440. |
[2] | 武晓云, 廖敏凌, 李雪茹, 舒梓淳, 辛佳潼, 张伯晗, 戴思兰. 毛华菊3种瓣型株系再生体系的建立[J]. 植物学报, 2024, 59(2): 245-256. |
[3] | 张冬瑞, 卜志刚, 陈玲玲, 常缨. 香鳞毛蕨的组织培养和快速繁殖体系构建[J]. 植物学报, 2020, 55(6): 760-767. |
[4] | 罗虹, 温小蕙, 周圆圆, 戴思兰. 芳香堆心菊离体再生体系的建立[J]. 植物学报, 2020, 55(3): 318-328. |
[5] | 徐悦,曹英萍,王玉,付春祥,戴绍军. 发根农杆菌介导的菠菜毛状根遗传转化体系的建立[J]. 植物学报, 2019, 54(4): 515-521. |
[6] | 张旭红, 王頔, 梁振旭, 孙美玉, 张金政, 石雷. 欧洲百合愈伤组织诱导及植株再生体系的建立[J]. 植物学报, 2018, 53(6): 840-847. |
[7] | 赵喜亭, 蒋丽微, 王苗, 朱玉婷, 张文芳, 李明军. 怀黄菊间接体胚受体再生体系的建立及CmTGA1的遗传转化[J]. 植物学报, 2016, 51(4): 525-532. |
[8] | 冯欢, 易姝利, 谢佳恒, 雷梦琦, 黄萱. 微型月季愈伤组织诱导及植株再生[J]. 植物学报, 2014, 49(5): 595-602. |
[9] | 赵利铭;刘树君;宋松泉;. 甜高粱再生体系的建立[J]. 植物学报, 2008, 25(04): 465-468. |
[10] | 张志扬 陈信波 张瑜 龙松华 高原 刘爱玲. 亚麻组织培养高频不定芽诱导体系[J]. 植物学报, 2007, 24(05): 629-635. |
[11] | 刘军 赵兰勇 丰震 张美蓉 吴银凤. 菊花叶盘片转基因再生体系的优化选择[J]. 植物学报, 2004, 21(05): 556-558. |
[12] | 叶茂富 李中居 黄国西 徐上貌 叶晓军 陈元松 褚长伟. 植物生长调节剂对几种园林植物插条生根的影响[J]. 植物学报, 1998, 15(增刊): 106-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||