[1] |
汪海, 赖锦盛, 王海洋, 李新海 (2022). 作物智能设计育种——自然变异的智能组合和人工变异的智能创制. 中国农业科技导报 24(6), 1-8.
DOI
|
[2] |
王向峰, 才卓 (2019). 中国种业科技创新的智能时代——“玉米育种4.0”. 玉米科学 27, 1-9.
|
[3] |
Chen Q, Li W, Tan L, Tian F (2021). Harnessing knowledge from maize and rice domestication for new crop breeding. Mol Plant 14, 9-26.
DOI
PMID
|
[4] |
Doebley J, Stec A, Hubbard L (1997). The evolution of apical dominance in maize. Nature 386, 485-488.
DOI
|
[5] |
Dong ZB, Li W, Unger-Wallace E, Yang JL, Vollbrecht E, Chuck G (2017). Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proc Natl Acad Sci USA 114, E8656-E8664.
|
[6] |
Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pè ME, Schmidt RJ (2004). The role of barren stalk1 in the architecture of maize. Nature 432, 630-635.
DOI
|
[7] |
Gälweiler L, Guan CH, Müller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226-2230.
DOI
PMID
|
[8] |
Gui ST, Wei WJ, Jiang CL, Luo JY, Chen L, Wu SS, Li WQ, Wang YB, Li SY, Yang N, Li Q, Fernie AR, Yan JB (2022). A pan-Zea genome map for enhancing maize improvement. Genome Biol 23, 178.
DOI
|
[9] |
Han LQ, Zhong WS, Qian J, Jin ML, Tian P, Zhu WC, Zhang HW, Sun YH, Feng JW, Liu XG, Chen G, Farid B, Li RN, Xiong ZM, Tian ZH, Li J, Luo Z, Du DX, Chen SJ, Jin QX, Li JX, Li Z, Liang Y, Jin XM, Peng Y, Zheng C, Ye XN, Yin YJ, Chen H, Li WF, Chen LL, Li Q, Yan JB, Yang F, Li L (2022). A multi-omics integrative network map of maize. Nat Genet https://www.nature.com/articles/s41588-022-01262-1
|
[10] |
Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou SJ, Liu JN, Ricci WA, Guo TT, Olson A, Qiu YJ, Della Coletta R, Tittes S, Hudson AI, Marand AP, Wei S, Lu ZY, Wang B, Tello-Ruiz MK, Piri RD, Wang N, Kim DW, Zeng YB, O’Connor CH, Li XR, Gilbert AM, Baggs E, Krasileva KV, Portwood JL II, Cannon EKS, Andorf CM, Manchanda N, Snodgrass SJ, Hufnagel DE, Jiang QH, Pedersen S, Syring ML, Kudrna DA, Llaca V, Fengler K, Schmitz RJ, Ross-Ibarra J, Yu JM, Gent JI, Hirsch CN, Ware D, Dawe RK (2021). De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science 373, 655-662.
|
[11] |
Liang YM, Liu HJ, Yan JB, Tian F (2021). Natural variation in crops: realized understanding, continuing promise. Annu Rev Plant Biol 72, 357-385.
DOI
PMID
|
[12] |
Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez GJ, Buckler E, Doebley J (2002). A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci USA 99, 6080-6084.
DOI
PMID
|
[13] |
Peng Y, Xiong D, Zhao L, Ouyang WZ, Wang SQ, Sun J, Zhang Q, Guan PP, Xie L, Li WQ, Li GL, Yan JB, Li XW (2019). Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat Commun 10, 2632.
DOI
PMID
|
[14] |
Schnable JC, Springer NM, Freeling M (2011). Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci USA 108, 4069-4074.
|
[15] |
Tu XY, Mejía-Guerra MK, Valdes Franco JA, Tzeng D, Chu PY, Shen W, Wei YY, Dai XR, Li PH, Buckler ES, Zhong SL (2020). Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nat Commun 11, 5089.
DOI
PMID
|
[16] |
Walley JW, Sartor RC, Shen ZX, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, Briggs SP (2016). Integration of omic networks in a developmental atlas of maize. Science 353, 814-818.
DOI
PMID
|
[17] |
Wen WW, Jin M, Li K, Liu HJ, Xiao YJ, Zhao MC, Alseekh S, Li WQ, de Abreu e Lima F, Brotman Y, Willmitzer L, Fernie AR, Yan JB (2018). An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. Plant J 93, 1116-1128.
DOI
URL
|
[18] |
Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R, Schmidt R, Doebley J, Brutnell TP, Jackson DP (2011). grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci USA 108, E506-E512.
|
[19] |
Xiao YG, Guo JY, Dong ZB, Richardson A, Patterson E, Mangrum S, Bybee S, Bertolini E, Bartlett M, Chuck G, Eveland AL, Scanlon MJ, Whipple C (2022). Boundary domain genes were recruited to suppress bract growth and promote branching in maize. Sci Adv 8, m6835.
|
[20] |
Xu XS, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu ZF, Wang LY, Fox N, Wang XF, Drenkow J, Luo AD, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D (2021). Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 56, 557-568.
DOI
PMID
|
[21] |
Yang F, Lei YY, Zhou ML, Yao QL, Han YC, Wu X, Zhong WS, Zhu CH, Xu WZ, Tao R, Chen X, Lin D, Rahman K, Tyagi R, Habib Z, Xiao SB, Wang D, Yu Y, Chen HC, Fu ZF, Cao G (2018). Development and application of a recombination-based library versus library high-throughput yeast two-hybrid (RLL-Y2H) screening system. Nucleic Acids Res 46, e17.
DOI
URL
|
[22] |
Zhu WC, Xu J, Chen SJ, Chen J, Liang Y, Zhang CJ, Li Q, Lai JS, Li L (2021). Large-scale translatome profiling annotates the functional genome and reveals the key role of genic 3' untranslated regions in translatomic variation in plants. Plant Commun 2, 100181.
DOI
URL
|