植物学报 ›› 2023, Vol. 58 ›› Issue (1): 1-5.DOI: 10.11983/CBB22271

所属专题: 杂粮生物学专辑 (2023年58卷1期)

• 热点评述 •    下一篇

多组学整合网络: 一把精准解码玉米功能基因组的钥匙

郭丽, 王雪涵, 田丰*()   

  1. 中国农业大学, 植物生理学与生物化学国家重点实验室, 国家玉米改良中心, 北京 100193
  • 收稿日期:2022-12-05 接受日期:2022-12-13 出版日期:2023-01-01 发布日期:2023-01-05
  • 通讯作者: *E-mail: ft55@cau.edu.cn
  • 基金资助:
    国家自然科学基金(32025027)

Multi-omics Integrative Network Map, a Key to Accurately Deco-ding the Maize Functional Genomics

Li Guo, Xuehan Wang, Feng Tian*()   

  1. State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
  • Received:2022-12-05 Accepted:2022-12-13 Online:2023-01-01 Published:2023-01-05
  • Contact: *E-mail: ft55@cau.edu.cn

摘要: 高通量组学技术的快速发展使生命科学进入大数据时代。科学家们从基因组、转录组、蛋白质组和代谢组等多组学数据中剥茧抽丝, 逐步揭示生物体内复杂而巧妙的调控网络。近日, 华中农业大学李林课题组联合杨芳课题组和严建兵课题组构建了玉米(Zea mays)首个多组学整合网络。该网络包括3万个玉米基因在三维基因组水平、转录水平、翻译水平和蛋白质互作水平的调控关系, 由280万个网络连接组成, 构成1 412个调控模块。利用该整合网络, 研究团队预测并证实了5个调控玉米分蘖、侧生器官发育和籽粒皱缩的新基因。进一步结合机器学习方法, 他们预测出2 651个影响玉米开花期的候选基因, 鉴定到8条可能参与玉米开花期的调控通路, 并利用基因编辑技术和EMS突变体证实了20个候选基因的生物学功能。此外, 通过对整合调控网络的进化分析, 他们发现玉米两套亚基因组在转录组、翻译组和蛋白互作组水平上存在渐进式的功能分化。这套集合多组学数据构建的整合网络图谱是玉米功能基因组学研究的重大进展, 为玉米重要性状新基因克隆、分子调控通路解析和玉米基因组进化分析提供了新工具, 是解锁玉米功能基因组学的一把新钥匙。

关键词: 玉米, 多组学, 整合网络图谱, 机器学习

Abstract: Life science is entering into the era of big data due to the rapid development of high-throughput omics technology. Multi-omics data such as genome, transcriptome, proteome, metabolome have greatly facilitated dissecting the complex and sophisticated regulatory networks of organisms. Recently, a collaborative team led by Lin Li, Fang Yang and Jianbing Yan from Huazhong Agricultural University constructed the first multi-omics integrative network map of maize. This map comprises over 30 000 genes and 2.8 million network edges at the levels of genome, transcriptome, translatome, and proteome, finally forming 1 412 regulatory modules. Using the integrative network map, the research team successfully predicted and confirmed five new functional genes regulating the development of tiller, lateral organ, and kernel in maize. Based on the integrative map and machine learning, the research team identified 2 651 maize flowering time genes that are enriched in eight candidate subnetworks. The biological functions of 20 flowering candidate genes were further validated using CRISPR/Cas9 gene editing technology and EMS mutants. Furthermore, evolutionary analysis of the integrative network map showed that the two subgenomes of maize had undergone a progressive functional differentiation from the levels of co-expression, co-translation to interactome. The construction of the multi-omics integrative network map represents an important breakthrough in maize functional genomics, which provides a new tool for cloning new genes, identifying novel molecular regulatory pathways, and revealing maize genome evolutionary features. This multi-omics integrative network map is a new key to decode maize functional genomics.

Key words: maize, multi-omics, integrative network map, machine learning