植物学报 ›› 2016, Vol. 51 ›› Issue (1): 98-106.DOI: 10.11983/CBB15011 cstr: 32102.14.CBB15011
收稿日期:
2015-02-12
接受日期:
2015-06-23
出版日期:
2016-01-01
发布日期:
2016-02-01
通讯作者:
张汉马
作者简介:
? 共同第一作者
基金资助:
Yongshu Liang, Junjie Zhou, Wenbin Nan, Dongdong Duan, Hanma Zhang*
Received:
2015-02-12
Accepted:
2015-06-23
Online:
2016-01-01
Published:
2016-02-01
Contact:
Zhang Hanma
About author:
? These authors contributed equally to this paper
摘要: 水稻(Oryza sativa)是我国最重要的粮食作物之一, 在保障国家持续的粮食供给中扮演着重要角色。根系作为水稻生长发育必不可少的器官, 间接地决定着水稻地上部产量、品质、抗逆及广适性等诸多农艺性状的表现。近年来, 随着水稻根系法的不断改进和图位克隆技术的完善及广泛应用, 水稻根系研究也取得了较大进展, 并已成功定位、分离、克隆了一些控制水稻根系的相关基因。该文从水稻根系法、相关性、基因定位、克隆及功能解析等层面综述了国内外水稻根系的研究进展, 并阐述了水稻根系研究存在的问题和今后研究的重点。
梁永书, 周军杰, 南文斌, 段东东, 张汉马. 水稻根系研究进展. 植物学报, 2016, 51(1): 98-106.
Yongshu Liang, Junjie Zhou, Wenbin Nan, Dongdong Duan, Hanma Zhang. Progress in Rice Root System Research. Chinese Bulletin of Botany, 2016, 51(1): 98-106.
根系性状 | Chr.1 | Chr.2 | Chr.3 | Chr.4 | Chr.5 | Chr.6 | Chr.7 | Chr.8 | Chr.9 | Chr.10 | Chr.11 | Chr.12 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根干重 | 15 | 12 | 13 | 10 | 12 | 11 | 7 | 5 | 12 | 0 | 18 | 10 | 125 |
根厚 | 14 | 21 | 8 | 14 | 9 | 6 | 4 | 11 | 14 | 2 | 8 | 3 | 114 |
根长 | 14 | 16 | 7 | 7 | 7 | 6 | 8 | 4 | 16 | 5 | 4 | 2 | 96 |
根数 | 17 | 10 | 9 | 6 | 4 | 7 | 9 | 4 | 4 | 4 | 5 | 2 | 81 |
总根重 | 7 | 10 | 2 | 3 | 6 | 3 | 8 | 1 | 10 | 0 | 2 | 0 | 52 |
根冠比 | 8 | 2 | 4 | 4 | 2 | 3 | 2 | 4 | 8 | 1 | 2 | 1 | 41 |
根穿透力 | 0 | 8 | 5 | 5 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 2 | 27 |
根穿透指数 | 0 | 8 | 5 | 5 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 2 | 27 |
根干重与分蘖数比 | 3 | 3 | 2 | 1 | 0 | 1 | 3 | 2 | 2 | 0 | 0 | 2 | 19 |
深层根冠比 | 3 | 6 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 18 |
根深度 | 2 | 3 | 0 | 4 | 2 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | 17 |
根穿透率 | 0 | 4 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 13 |
根体积 | 0 | 4 | 3 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 13 |
根系活力 | 0 | 1 | 3 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 0 | 12 |
根拉力 | 0 | 2 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 12 |
根分枝 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
根吸收铁 | 11 | 1 | 1 | 0 | 0 | 5 | 5 | 1 | 2 | 0 | 3 | 1 | 30 |
根吸收锌 | 5 | 4 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 5 | 20 |
根吸收铝 | 5 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 11 |
根吸收锰 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
合计 | 105 | 116 | 72 | 65 | 55 | 47 | 56 | 36 | 74 | 16 | 57 | 33 | 732 |
表1 水稻根系形态性状QTLs在染色体上的分布
Table 1 Distribution of QTLs associated with root morphological traits of rice on the whole genome
根系性状 | Chr.1 | Chr.2 | Chr.3 | Chr.4 | Chr.5 | Chr.6 | Chr.7 | Chr.8 | Chr.9 | Chr.10 | Chr.11 | Chr.12 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根干重 | 15 | 12 | 13 | 10 | 12 | 11 | 7 | 5 | 12 | 0 | 18 | 10 | 125 |
根厚 | 14 | 21 | 8 | 14 | 9 | 6 | 4 | 11 | 14 | 2 | 8 | 3 | 114 |
根长 | 14 | 16 | 7 | 7 | 7 | 6 | 8 | 4 | 16 | 5 | 4 | 2 | 96 |
根数 | 17 | 10 | 9 | 6 | 4 | 7 | 9 | 4 | 4 | 4 | 5 | 2 | 81 |
总根重 | 7 | 10 | 2 | 3 | 6 | 3 | 8 | 1 | 10 | 0 | 2 | 0 | 52 |
根冠比 | 8 | 2 | 4 | 4 | 2 | 3 | 2 | 4 | 8 | 1 | 2 | 1 | 41 |
根穿透力 | 0 | 8 | 5 | 5 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 2 | 27 |
根穿透指数 | 0 | 8 | 5 | 5 | 1 | 1 | 1 | 1 | 0 | 1 | 2 | 2 | 27 |
根干重与分蘖数比 | 3 | 3 | 2 | 1 | 0 | 1 | 3 | 2 | 2 | 0 | 0 | 2 | 19 |
深层根冠比 | 3 | 6 | 1 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 18 |
根深度 | 2 | 3 | 0 | 4 | 2 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | 17 |
根穿透率 | 0 | 4 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 13 |
根体积 | 0 | 4 | 3 | 0 | 4 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 13 |
根系活力 | 0 | 1 | 3 | 0 | 2 | 1 | 0 | 2 | 1 | 1 | 1 | 0 | 12 |
根拉力 | 0 | 2 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 12 |
根分枝 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
根吸收铁 | 11 | 1 | 1 | 0 | 0 | 5 | 5 | 1 | 2 | 0 | 3 | 1 | 30 |
根吸收锌 | 5 | 4 | 1 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 5 | 20 |
根吸收铝 | 5 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 11 |
根吸收锰 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
合计 | 105 | 116 | 72 | 65 | 55 | 47 | 56 | 36 | 74 | 16 | 57 | 33 | 732 |
基因 | 基因功能 | 染色体分布 | 参考文献 |
---|---|---|---|
IRT1 | 吸收Fe2+ | Chr.3 | Naimatullah et al., 2002 |
Rrl3 | 根尖分生区 | Chr.3 | Inukai et al., 2003 |
Srt5 | 短根 | Chr.5 | Yao et al., 2004 |
OsPTF1 | 吸收磷元素 | Chr.6 | Yi et al., 2005 |
SKC1 | 吸收Na+/K+ | Chr.1 | Ren et al., 2005 |
ARL1 | 不定根形成 | Chr.3 | Liu et al., 2005 |
OsGNA1 | 短根 | Chr.9 | Jiang et al., 2005 |
Lsi1 | 吸收硅离子 | Chr.2 | Ma et al., 2006 |
WOX11 | 冠根 | Chr.3 | Zhao et al., 2009 |
DEP1 | 吸收氮/直立型密穗 | Chr.9 | Huang et al., 2009; Sun et al., 2014 |
表2 已经克隆的部分水稻根系性状相关基因
Table 2 Partial cloned genes associated with rice root traits
基因 | 基因功能 | 染色体分布 | 参考文献 |
---|---|---|---|
IRT1 | 吸收Fe2+ | Chr.3 | Naimatullah et al., 2002 |
Rrl3 | 根尖分生区 | Chr.3 | Inukai et al., 2003 |
Srt5 | 短根 | Chr.5 | Yao et al., 2004 |
OsPTF1 | 吸收磷元素 | Chr.6 | Yi et al., 2005 |
SKC1 | 吸收Na+/K+ | Chr.1 | Ren et al., 2005 |
ARL1 | 不定根形成 | Chr.3 | Liu et al., 2005 |
OsGNA1 | 短根 | Chr.9 | Jiang et al., 2005 |
Lsi1 | 吸收硅离子 | Chr.2 | Ma et al., 2006 |
WOX11 | 冠根 | Chr.3 | Zhao et al., 2009 |
DEP1 | 吸收氮/直立型密穗 | Chr.9 | Huang et al., 2009; Sun et al., 2014 |
1 | 伯姆 (1985). 根系研究法. 北京: 科学出版社. |
2 | 陈子元 (1997). 核农学. 北京: 中国农业出版社. |
3 | 程式华 (2010). 中国超级稻育种. 北京: 科学出版社. |
4 | 冯荣坤 (2006). 超高产水稻育种的研究进展. 湖南农业科学 (3), 19-22. |
5 | 顾东祥, 汤亮, 曹卫星, 朱艳 (2010). 基于图像分析方法的水稻根系形态特征指标的定量分析. 作物学报 36, 810-817. |
6 | 何强, 邓华凤, 舒服, 杨益善, 刘国华, 刘建丰, 陈立云 (2006). 杂交水稻苗期发根性状与生育后期根系活力及穗部性状的关系. 杂交水稻 21(3), 75-77. |
7 | 姜树坤, 徐正进, 陈温福 (2008). 水稻QTL图位克隆的特征分析. 遗传 30, 1121-1126. |
8 | 李双成, 王世全, 伊福强, 邹良平, 起登风, 江洪, 李平 (2005). 提高农杆菌介导转化水稻效率的因素. 中国水稻科学 19, 231-237. |
9 | 廖兴其 (1995). 根系研究方法评述. 世界农业 12, 23-24. |
10 | 凌启鸿, 凌励 (1984). 水稻不同层次根系的功能及对产量形成作用的研究. 中国农业科学 17(5) , 3-11. |
11 | 刘士哲 (2001). 无土栽培技术. 北京: 中国农业出版社. |
12 | 陆定志 (1987). 杂交水稻根系生理优势及其与地上部性状的关联研究. 中国水稻科学 1(2), 81-94. |
13 | 石庆华, 黄英金, 李木英, 徐益群, 谭雪明, 张佩莲 (1997). 水稻根系性状与地上部的相关性及根系性状的遗传研究. 中国农业科学 30(4), 61-67. |
14 | 宋祥甫 (2001). 水稻无土栽培. 济南: 山东科学技术出版社. |
15 | 谈聪, 翁小煜, 鄢文豪, 白旭峰, 邢永忠 (2012). 多效性基因Ghd7调控水稻剑叶面积. 遗传 34, 901-906. |
16 | 王福钧 (1993). 核技术农业应用. 北京: 北京农业大学出版社. |
17 | 吴伟明, 程式华 (2005). 水稻根系育种的意义与前景. 中国水稻科学 19, 174-180. |
18 | 张建锋, 吴迪, 龚向阳, 何勇, 刘飞 (2012). 基于核磁共振成像技术的作物根系无损检测. 农业工程学报 28(8), 181-185. |
19 | 钟旭华, 黄农荣 (2005). 水稻结实期根系活性与稻米垩白形成的相关性初步研究. 中国水稻科学 19, 471-474. |
20 | 朱德峰 (1996). 国际水稻研究所水稻新株型的研究现状与动向. 作物研究 1(4) , 35-36. |
21 | 朱德峰, 林贤青, 曹卫星 (2001). 水稻深层根系对生长和产量的影响. 中国农业科学 34, 429-432. |
22 | 邹江石, 吕川根 (2005). 水稻超高产育种的实践与思考. 作物学报 31, 254-258. |
23 | Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT (2000). Mapping QTLs for root traits in a recombinant inbred population from two indica ecotypes in rice.Theor Appl Genet 101, 756-766. |
24 | Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002). Cloning an iron-regulated metal transporter from rice.J Exp Bot 53, 1677-1682. |
25 | Champoux MC, Wang G, Sarkarung S, Mackill DJ, Toole JC, Huang N, McCouch SR (1995). Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers.Theor Appl Genet 90, 969-981. |
26 | Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amlyase promoter/β-glucu- ronidase gene.Plant Mol Biol 22, 491-506. |
27 | Coulson A, Sulstion J, Brenner S, Karn J (1986). Toward a physical map of the genome of the ncmatode C. elegans.Proc Natl Acad Sci USA 83, 7821-7825. |
28 | Cui H, Peng B, Xing Z, Xu G, Yu B, Zhang Q (2002). Mole- cular dissection of seedling-vigor and associated physiological traits in rice.Theor Appl Genet 105, 745-753. |
29 | Hemamalini GS, Shashidhar HE, Hittalmani S (2000). Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.).Euphytica 112, 69-78. |
30 | Hiei Y, Ohta S, Komari T, Komari T (1994). Efficient transformation of rice mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.Plant J 6, 271-282. |
31 | Horii H, Nemoto K, Miyamoto N, Harada J (2006). Quantitative trait loci for adventitious and lateral roots in rice.Plant Breeding 125, 198-200. |
32 | Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009). Natural variation at the DEP1 locus enhances grain yield in rice.Nature Genet 41, 494-497. |
33 | Inukai Y, Miwa M, Nagato Y, Kitano H, Yamauchi A (2003). Mechanical stimulus-sensitive mutation, Rrl3, affects the cell production process in the root meristematic zone in rice.Plant Prod Sci 6, 265-273. |
34 | Jiang HW, Wang SM, Dang L, Wang SF, Chen HM, Wu YR, Jiang XH, Wu P (2005). A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice.Plant Physiol 138, 232-242. |
35 | Kanbar A, Toorchi M, Shashidhar HE (2009). Relationship between yield and root morphological characters in rainfed lowland rice (Oryza sativa L.).Cereal Res Commun 37, 261-268. |
36 | Kong FL (2006). Summary of QTL mapping. In: Quantitative Genetics in Plants. Beijing: China Agricultural University Press. pp. 358-359. |
37 | Kristian TK (1998). Root growth of green pea (Pisum satium L.). genotypes.Crop Sci 38, 1445-1451. |
38 | Lehman VG, Engelke MG (1991). Heritability estimates of creeping bentgrass root systems grown in flexible tubes.Crop Sci 31, 1680-1684. |
39 | Liang YS, Gao ZQ, Zhan XD, Chen YL, Chen DB, Shen XH, Cao LY, Cheng SH (2011). Phenotypic correlation among root and shoot traits in an elite Chinese hybrid rice combination and its three derived populations.Acta Agron Sin 37, 1711-1723. |
40 | Liang YS, Zhan XD, Gao ZQ, Lin ZC, Yang ZL, Zhang YX, Shen XH, Cao LY, Cheng SH (2012). Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308.Euphytica 184, 1-13. |
41 | Liang YS, Zhang XD, Wang HM, Gao ZQ, Lin ZC, Chen DB, Shen XH, Cao LY, Cheng SH (2013). Locating QTLs controlling several adult root traits in an elite Chinese hybrid rice.Gene 526, 331-335. |
42 | Lincoln S, Daly M, Lander E (1992). Constructing genetic maps with MAPMAKER/EXP 3.0. Cambridge: Whitehead Institute Technical Report, Whitehead Institute. |
43 | Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005). ARL1, a LOB-domain protein required for adventitious root formation in rice.Plant J 43, 47-56. |
44 | Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006). A silicon transporter in rice.Nature 440, 688-691. |
45 | Morita S, Iwabuchi A, Yamazaki K (1986). Relationships between the growth direction of primary roots and yield in rice plants.Crop Sci 55, 520-525. |
46 | Price AH (2000). A combined RFLP and AFLP linkage map of upland rice (Oryza sativa L.) used to identify QTLs for root-penetration ability.Theor Appl Genet 100, 49-56. |
47 | Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter.Nature Genet 37, 1141-1146. |
48 | Sun HY, Qian Q, Wu K, Luo JJ, Wang SS, Zhang CW, Ma YF, Liu Q, Huang XZ, Yuan QB, Han RX, Zhao M, Dong GJ, Guo LB, Zhu XD, Gou ZH, Wang W, Wu YJ, Lin HX, Fu XD (2014). Heterotrimeric G proteins regulate nitrogen-use efficiency in rice.Nature Genet 46, 652-656. |
49 | Tanksley SD, Gana MW, Martin GG (1995). Chromosome landing a paradigm for map-based cloning in plants with large genomes.Trends Genet 11, 63-68. |
50 | Tao QN, Wu P, Fang P (1999). QTLs for rice root morphological characters.Acta Agron Sin 25, 181-185. |
51 | Turman PC, Wiebold WJ, Wrahter JA, Tracy W (1995). Cultivar and planting date effects on soybean root growth.Plant Soil 176, 235-241. |
52 | Wang S, Basten CJ, Zeng ZB (2006). Windows QTL Cartographer 2.50. Raleigh, USA: Department of Statistics, North Carolina State University. . |
53 | Xu JC, Zou LX (2002). Identification of molecular markers associated with rice root traits by correlation coefficient analysis.Acta Genet Sin 29, 245-249. |
54 | Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nature Genet 40, 761-767. |
55 | Yan CJ, Liang GH, Chen F, Li X, Tang SZ, Yi CD, Tian S, Lu JF, Gu MH (2003). Mapping quantitative trait loci associated with rice grain shape based on an indica/japo- nica backcross population. Acta Genet Sin 30, 711-716. |
56 | Yang J, Cheng CH, Xiu ZY, Zhu J (2009). QTL Network- 2.10 User Manual Software for Mapping QTL with Epistatic and QE Interaction Effects. Hangzhou: Zhejiang University. |
57 | Yao SG, Mushika J, Taketa S, Ichii M (2004). The short- root mutation srt5 defines a sugar-mediated root growth in rice (Oryza sativa L.).Plant Sci 167, 49-54. |
58 | Yi KK, Wu ZC, Zhou J, Du LM, Guo LB, Wu YR, Wu P (2005). OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice.Plant Physiol 138, 2087-2096. |
59 | Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, Cao ML, Liu J, Sun JD, Tang JB, Chen YJ, Huang XB, Lin W, Ye C, Tong W, Cong LJ, Geng JN, Han YJ, Li L, Li W, Hu GQ, Huang XG, Li WJ, Li J, Liu ZW, Li L, Liu JP, Qi QH, Liu JS, Li L, Li T, Wang XG, Lu H, Wu TT, Zhu M, Ni PX, Han H, Dong W, Ren XY, Feng XL, Cui P, Li XR, Wang H, Xu X, Zhai WX, Xu Z, Zhang JS, He SJ, Zhang JG, Xu JC, Zhang KL, Zheng XW, Dong JH, Zeng WY, Tao L, Ye J, Tan J, Ren XD, Chen XW, He J, Liu DF, Tian W, Tian CG, Xia HG, Bao QY, Li G, Gao H, Cao T, Wang J, Zhao WM, Li P, Chen W, Wang XD, Zhang Y, Hu JF, Wang J, Liu S, Yang J, Zhang GY, Xiong YQ, Li ZJ, Mao L, Zhou CS, Zhu Z, Chen RS, Hao BL, Zheng WM, Chen SY, Guo W, Li GJ, Liu SQ, Tao M, Wang J, Zhu LH, Yuan LP, Yang HM (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica).Science 296, 79-92. |
60 | Yu SB, Li JX, Xu CG, Tan YF, Li XH, Zhang QF (2002). Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice.Theor Appl Genet 104, 619-625. |
61 | Zhang J, Zheng HG, Aarti A, Pantuwan G, Nguyen TT, Tripathy JN, Sarial AK, Robin S, Babu RC, Nguyen BD, Sarkarung S, Blum A, Nguyen HT (2001). Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species.Theor Appl Genet 103, 19-29. |
62 | Zhao Y, Hu YF, Dai MG, Huang LM, Zhou DY (2009). The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice.Plant Cell 21, 736-748. |
63 | Zheng BS, Yang L, Zhang WP, Mao CZ, Wu YR, Yi KK, Liu FY, Wu P (2003). Mapping QTLs and candidate genes for rice root traits under different water-supply con- ditions and comparative analysis across three populations.Theor Appl Genet 107, 1505-1515. |
[1] | 张子睿, 周静, 胡艳萍, 梁爽, 马永鹏, 陈伟乐. 极度濒危植物巧家五针松的根内和根际真菌群落特征[J]. , 2025, 49(濒危植物的保护与恢复): 0-. |
[2] | 王秀媛, 申磊, 刘婷婷, 尉雯雯, 张帅, 张伟. ‘塞外红’苹果-大豆复合系统根系时空分布与种间竞争策略[J]. 植物生态学报, 2025, 49(5): 748-759. |
[3] | 杜英杰, 范爱连, 王雪, 闫晓俊, 陈廷廷, 贾林巧, 姜琦, 陈光水. 亚热带天然常绿阔叶林乔木树种与林下灌木树种根-叶功能性状协调性及差异[J]. 植物生态学报, 2025, 49(4): 585-595. |
[4] | 王娟, 张登山, 肖元明, 裴全帮, 王博, 樊博, 周国英. 长期围封后高寒草原植物根系分泌物特征与环境因子关系[J]. 植物生态学报, 2025, 49(4): 596-609. |
[5] | 田伟, 陈佳杰, 陈渊戈, 徐清, 周进. 浙江象山港蟹类(十足目: 短尾下目)物种多样性[J]. 生物多样性, 2025, 33(4): 24461-. |
[6] | 叶灿, 姚林波, 金莹, 高蓉, 谭琪, 李旭映, 张艳军, 陈析丰, 马伯军, 章薇, 张可伟. 水稻水杨酸代谢突变体高通量筛选方法的建立与应用[J]. 植物学报, 2025, 60(4): 1-0. |
[7] | 李梦琦, 苗灵凤, 李大东, 龙奕帆, 叶冰冰, 杨帆. 海南东寨港红树林植物细根功能性状对不同潮位沉积物养分变化的响应[J]. 植物生态学报, 2025, 49(4): 552-561. |
[8] | 刘雨函, 曹启江, 张诗晗, 李益慧, 王菁, 谭晓萌, 刘筱儒, 王显玲. 拟南芥AtFTCD-L参与根系响应土壤紧实度的机制研究[J]. 植物学报, 2025, 60(4): 1-0. |
[9] | 郭李琦, 闫晓蕾, 曹磊, 高景, 刘瑞强, 周旭辉. 树种菌根类型与根系性状对根际微生物网络复杂性的影响[J]. 植物生态学报, 2025, 49(4): 573-584. |
[10] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[11] | 曾文丹, 严华兵, 吴正丹, 尚小红, 曹升, 陆柳英, 肖亮, 施平丽, 程冬, 龙紫媛, 李婕宇. 发根农杆菌介导的野葛毛状根遗传转化体系[J]. 植物学报, 2025, 60(3): 425-434. |
[12] | 赵凌, 管菊, 梁文化, 张勇, 路凯, 赵春芳, 李余生, 张亚东. 基于高密度Bin图谱的水稻苗期耐热性QTL定位[J]. 植物学报, 2025, 60(3): 342-353. |
[13] | 李新宇, 谷月, 徐非非, 包劲松. 水稻胚乳淀粉合成相关蛋白的翻译后修饰研究进展[J]. 植物学报, 2025, 60(2): 256-270. |
[14] | 郑琳敏, 熊小玲, 姜永孟, 王曼, 张锦秀, 曾志伟, 吕茂奎, 谢锦升. 武夷山不同海拔杉木凋落叶和细根分解规律以及驱动因素的差异[J]. 植物生态学报, 2025, 49(2): 244-255. |
[15] | 李建国, 张怡, 张文君. 水稻根系铁膜形成及对磷吸收的影响[J]. 植物学报, 2025, 60(1): 132-143. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||