Chin Bull Bot ›› 2020, Vol. 55 ›› Issue (1): 5-8.doi: 10.11983/CBB20002

• COMMENTARIES • Previous Articles     Next Articles

A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice

Han Mei-ling1,2,Tan Ru-jiao1,3,Chao Dai-yin1,*()   

  1. 1National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Jiangsu Normal University, Xuzhou 221000, China
  • Received:2020-01-07 Accepted:2020-01-13 Online:2020-02-07 Published:2020-01-01
  • Contact: Chao Dai-yin


The Green Revolution represented by the breeding of semi-dwarf crops greatly promoted agriculture yield, but it also unfortunately led to the problem of low nitrogen use efficiency (NUE). The achievement of Green Revolution was mainly based on modification of gibberellin (GA) metabolic or signaling pathways in crops. A previous study has found that the central regulator of GA signaling pathway DELLA protein negatively regulates NUE through suppressing GRF4, an essential NUE regulator, which provided a resolution for improving NUE of semi-dwarf rice. A recent study further revealed a novel mechanism underlying the crosstalk between GA signaling and nitrogen response. The study revealed that NGR5 is a key gene controlling tiller number changes under different nitrogen conditions, which is inducible by nitrogen. Further investigation established that the NGR5 suppresses branching inhibitory genes, such as D14 and OsSPL14, through nitrogen-dependent recruitment of polycomb repressive complex 2 that promotes histone H3 lysine 27 tri-methylation in the regions habouring the branching suppressors. In addition to be responsive to nitrogen, NGR5 is also negatively regulated by GA and its receptor GID, and overexpression of NGR5 in the semi-dwarf background is thus able to significantly improve rice yields under low nitrogen conditions. This study not only uncovered a new mechanism of GA signaling, but also enlightens the new generation of Green Revolution by breeding high yield crops with enhanced NUE.

Key words: rice, tiller number, nitrogen use efficiency, histone modification

Figure 1

The targets and molecular mechanisms of Green Revolution and next generation breeding In Green Revolution, suppression of GA signaling leads to accumulation of DELLA protein that results in semi-dwarf phenotype, but it also inhibits activity of GRF4 and subsequently decreases nitrogen use efficiency of crops. GRF4 and NGR5 provide excellent targets for next generation breeding which aims to crops with high nitrogen use efficiency and high yield. Improvement of these two genes helps to achieve yield with low nitrogen input and break through the bottle neck of fertilizer dependent yield increasing. The font size and color of the characters represent increase (red and larger font) or decrease (green and smaller font)."

[1] Crawford NM, Forde BG (2002). Molecular and developmental biology of inorganic nitrogen nutrition. Arabidopsis Book 1, e0011.
[2] Gooding MJ, Addisu M, Uppal RK, Snape JW, Jones HE (2012). Effect of wheat dwarfing genes on nitrogen-use efficiency. J Agric Sci 150, 3-22.
[3] Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010). Significant acidification in major Chinese crop- lands. Science 327, 1008-1010.
[4] Harberd NP, Belfield E, Yasumura Y (2009). The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an "inhibitor of an inhibitor" enables flexible response to fluctuating environments. Plant Cell 21, 1328-1339.
[5] Khush GS (1999). Green Revolution: preparing for the 21st century. Genome 42, 646-655.
[6] Kong WD, Zhu YG, Fu BJ, Han XZ, Zheng L, He JZ (2008). Effect of long-term application of chemical fertilizers on microbial biomass and functional diversity of a black soil. Pedosphere 18, 801-808.
[7] Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Harberd NP, Fu XD (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
[8] Murase K, Hirano Y, Sun TP, Hakoshima T (2008). Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459-463.
[9] Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pe- lica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999). 'Green Revolution' genes encode mutant gibberellin response modulators. Nature 400, 256-261.
[10] Pingali PL (2012). Green Revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci USA 109, 12302-12308.
[11] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002). Green Revolution: a mutant gibberellin-synthesis gene in rice. Nature 416, 701-702.
[12] Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896-1898.
[13] Shimada A, Ueguchi-Tanaka M, Nakatsu T, Nakajima M, Naoe Y, Ohmiya H, Kato H, Matsuoka M (2008). Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520-523.
[14] Spielmeyer W, Ellis MH, Chandler PM (2002). Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99, 9043-9048.
[15] Wu K, Wang SS, Song WZ, Zhang JQ, Wang Y, Liu Q, Yu JP, Ye YF, Li S, Chen JF, Zhao Y, Wang J, Wu XK, Wang MY, Zhang YJ, Liu BM, Wu YJ, Harberd NP, Fu XD (2020). Enhanced sustainable Green Revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046.
[16] Zhang CH, Gao LF, Sun JQ, Jia JZ, Ren ZL (2014). Haplotype variation of Green Revolution gene Rht-D1 during wheat domestication and improvement. J Integr Plant Biol 56, 774-780.
[1] Lu ZHANG. Nitrogen utilization mechanism in C3 and C4 plants [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] Chen Wei,Yang Yingzeng,Chen Feng,Zhou Wenguan,Shu Kai. Stress Memory Mediated by Epigenetic Modification in Plants [J]. Chin Bull Bot, 2019, 54(6): 779-785.
[3] Zhang Tong,Guo Yalu,Chen Yue,Ma Jinjiao,Lan Jinping,Yan Gaowei,Liu Yuqing,Xu Shan,Li Liyun,Liu Guozhen,Dou Shijuan. Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress [J]. Chin Bull Bot, 2019, 54(6): 711-722.
[4] Tian Huaidong, Li Jing, Tian Baohua, Niu Pengfei, Li Zhen, Yue Zhongxiao, Qu Yajuan, Jiang Jianfang, Wang Guangyuan, Cen Huihui, Li Nan, Yan Feng. Method for N-methyl-N-nitrosourea Mutagenesis on Hermaphroditic Germ Cells of Rice [J]. Chin Bull Bot, 2019, 54(5): 625-633.
[5] Zhou Chun, Jiao Ran, Hu Ping, Lin Han, Hu Juan, Xu Na, Wu Xianmei, Rao Yuchun, Wang Yuexing. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chin Bull Bot, 2019, 54(5): 606-619.
[6] Zhang Shuo, Wu Changyin. Long Noncoding RNA Ef-cd Promotes Maturity Without Yield Penalty in Rice [J]. Chin Bull Bot, 2019, 54(5): 550-553.
[7] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[8] Cheng Xinjie, Yu Hengxiu, Cheng Zhukuan. Protocols for Analyzing Rice Meiotic Chromosomes [J]. Chin Bull Bot, 2019, 54(4): 503-508.
[9] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[10] Liu Jin, Yao Xiaoyun, Yu Liqin, Li Hui, Zhou Huiying, Wang Jiayu, Li Maomao. Detection and Analysis of Dynamic Quantitative Trait Loci at Three Years for Seed Storability in Rice (Oryza sativa) [J]. Chin Bull Bot, 2019, 54(4): 464-473.
[11] Wang Xiaolin,Wang Ertao. NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice [J]. Chin Bull Bot, 2019, 54(3): 285-287.
[12] Chen Lin,Lin Yan,Chen Pengfei,Wang Shaohua,Ding Yanfeng. Effect of Iron Deficiency on the Protein Profile of Rice (Oryza sativa) Phloem Sap [J]. Chin Bull Bot, 2019, 54(2): 194-207.
[13] Yang Dewei,Wang Mo,Han Libo,Tang Dingzhong,Li Shengping. Progress of Cloning and Breeding Application of Blast Resistance Genes in Rice and Avirulence Genes in Blast Fungi [J]. Chin Bull Bot, 2019, 54(2): 265-276.
[14] Ye Wenlan,Ma Guolan,Yuan liyanan,Zheng Shiyi,Cheng Linqiao,Fang Yuan,Rao Yuchun. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice [J]. Chin Bull Bot, 2019, 54(2): 277-283.
[15] Li Lulu, Yin Wenchao, Niu Mei, Meng Wenjing, Zhang Xiaoxing, Tong Hongning. Functional Analysis of Brassinosteroids in Salt Stress Responses in Rice [J]. Chin Bull Bot, 2019, 54(2): 185-193.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] SONG Li-Ying TAN Zheng GAO Feng DENG Shu-Yan. Advances in in vitro Culture of Cucurbitaceae in China[J]. Chin Bull Bot, 2004, 21(03): 360 -366 .
[5] Shi Jian ming;Gui Yao-lin and Zhu Zhi-qing. Observation on Amitosis of Sugarbeet (Beta vulgaris) Petiole during Dedifferentiation in Vitro[J]. Chin Bull Bot, 1989, 6(03): 155 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[8] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 8 -9 .
[10] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .