Chinese Bulletin of Botany ›› 2018, Vol. 53 ›› Issue (6): 764-772.doi: 10.11983/CBB17198

• EXPERIMENTAL COMMUNICATIONS • Previous Articles     Next Articles

Polychlorinated Biphenyls Promotes Differentiation on Adventitious Roots of Populous tomentosa

Liu Ming1, Liu Xia1, Sun Ran1,2, Li Yuling1, Du Kejiu1,2,*()   

  1. 1Agricultural University of Hebei, Baoding 071000, China
    2Key Laboratory of Tree Species Germplasm Resource and Forest Protection of Hebei Province, Baoding 071000, China
  • Received:2017-10-27 Online:2018-12-05 Published:2018-11-01
  • Contact: Du Kejiu E-mail:dukejiu@126.com

Abstract:

Polychlorinated biphenyls (PCBs) pose serious harm to humans and the environment. PCBs have a hormesis effect, but the inner mechanism still remains unknown. In this paper, we used Populous tomentosa seedlings to investigate the effect of treatment with a PCB compound, Aroclor1254 (3 mg·L-1), on the differentiation of adventitious roots, phytohormone content and the expression of P009g125900, P006g142600, and P002g222700 genes related to auxin expression as well as P005g2489 and P005g2376 genes related to cytokinin expression. Aroclor1254 could promote the differentiation of adventitious roots, shorten the initial root formation time of adventitious roots, and enhance the adventitious root number. During adventitious root differentiation, Aroclor1254 treatment alone had a similar effect as IBA alone on IAA/(ZR+dhZR) content and the gene expression of P006g142600, P002g222700, P009g125900, P005g2489, and P005g2376. To further verify the auxin effect of Aroclor1254, we used Zea mays and transgenic Arabidopsis thaliana modified with a DR5::GUS auxin reporter gene to investigate the growth of coleoptiles or the response pattern of DR5::GUS to Aroclor1254 exposure. Aroclor1254 at a suitable concentration range could induce DR5::GUS gene expression but had no effect on the growth of coleoptiles. Thus, Aroclor1254 has a biological effect of auxin and can positively affect the differentiation of adventitious roots of P. tomentosa seedlings; a phenomenon called hormesis, but is not a plant growth regulator.

Key words: Aroclor1254, adventitious roots differentiation, phytohormone, gene expression, coleoptile, DR5::GUS

Table 1

Effect of different treatments on the differentiation of adventitious roots of Populous tomentosa seedlings"

Treatments The time of an
initial root (d)
Period reaching 100% of adventitious roots differentiation rate (d)
CK- 7 13
CK+ 5 9
Aroclor1254 5 10

Figure 1

Effect of different treatments on the number of adventitious roots of Populous tomentosa seedlings"

Table 2

Changes of phytohormonal contents in sections of stems of Populous tomentosa seedlings under different treatments"

Treatments IAA (ng·g-1 FW) ZR (ng·g-1 FW) dhZR (ng·g-1 FW) IAA/(ZR+dhZR)
0 d 62.078±2.105a 6.657±0.099a 2.997±0.214a 6.431±0.218a
4 d CK- 88.393±0.601b 12.248±0.444b 4.067±0.135b 5.418±0.037c
4 d CK+ 102.893±2.517d 12.283±0.479b 5.040±0.280c 5.940±0.145b
4 d Aroclor1254 93.052±2.617c 11.916±0.443b 3.736±0.119b 5.945±0.167b

Table 3

Changes of the expression of genes related to auxin and cytokinin in sections of stems of Populous tomentosa seedlings under different treatments"

Treatments P005g2489 P005g2376 P002g222700 P006g142600 P009g125900
0 d 1.000±0.000a 1.000±0.000a 1.000±0.000a 1.000±0.000a 1.000±0.000a
CK- 3.012±0.520b 3.778±0.133c 9.153±0.381c 2.958±0.257c 1.985±0.131b
CK+ 1.299±0.201a 1.010±0.045a 3.444±0.517b 2.240±0.496b 4.298±0.091c
Aroclor1254 1.451±0.298a 2.039±0.188b 2.804±0.518b 2.022±0.463b 20.165±0.614d

Figure 2

Effect of different treatments on the growth of coleoptiles in Zea mays Different lowercase letters indicate significant differences among different treatments (P<0.05)."

Figure 3

Effect of different concentration of Aroclor1254 on DR5::GUS genes response of Arabidopsis seedlings ck: Negative control; 1-7 indicate the working concentration of 10, 20, 40, 60, 80, 100 and 2 000 μg·L-1, respectively."

Figure 4

Effect of different induction time on DR5::GUS gene response of Arabidopsis seedlings ck: Negative control; 1-12 indicate the induction time of 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24 h, respectively."

[1] 蔡卓平 (2009). 有机磷农药对海洋微藻的毒物兴奋效应及其机理研究. 博士论文. 广州: 暨南大学. pp. 59-98.
[2] 丁娜 (2012). 多氯联苯在毫米级根际微域中的消减行为及生物响应机制研究. 博士论文. 杭州: 浙江大学. pp. 64-85.
[3] 何佳 (2007). 多氯联苯(PCBs)对模式植物拟南芥的毒效应机制研究. 硕士论文. 杭州: 浙江大学. pp. 14-19.
[4] 李雪梅, 刘熔山 (1994). 小麦幼穗胚性愈伤组织诱导及分化过程中内源激素的作用. 植物生理学报 30, 255-260.
[5] 李叶, 张爽, 李玉灵, 杜克久 (2016). 多氯联苯暴露对绦柳初生根及显微结构的影响. 北方园艺 (24), 55-60.
[6] 梁继仁 (2012). SD大鼠新生期联合暴露苯并芘和3, 3', 4, 4', 5, 5'-六氯联苯对睾丸抗氧化酶和精子形成的影响. 硕士论文. 上海: 复旦大学. pp. 7-44.
[7] 刘亚云, 孙红斌, 陈桂珠 (2007a). 多氯联苯对桐花树幼苗生长及膜保护酶系统的影响. 应用生态学报 18, 123-128.
[8] 刘亚云, 孙红斌, 陈桂珠, 赵波, 李伟煜 (2007b). 秋茄(Kan- delia candel)幼苗对多氯联苯污染的生理生态响应. 生态学报 27, 746-754.
doi: 10.3321/j.issn:1000-0933.2007.02.040
[9] 史树德, 孙亚卿, 魏磊 (2011). 植物生理学实验指导. 北京: 中国林业出版社. pp. 102-107.
[10] 孙然, 池翠兰, 李燕玲, 杜克久 (2015). 苯并[a]芘暴露对绦柳生长发育的影响. 河北林果研究 30, 126-128.
doi: 10.13320/j.cnki.hjfor.2015.0032
[11] 王传飞, 龚平, 王小萍, 姚檀栋 (2016). 西藏农田土和农作物中多氯联苯的分布、环境行为和健康风险评估. 生态毒理学报 11, 339-346.
doi: 10.7524/AJE.1673-5897.20151202003
[12] 王亚红, 赵燕, 彭彦, 刘晓柱, 张学文 (2012). 5′UTR序列对DR5::GUS基因瞬时表达的影响. 湖南农业大学学报(自然科学版) 38, 146-149.
[13] 王忠 (2009). 植物生理学(第2版). 北京: 中国农业出版社. pp. 315-329.
[14] 王子岚 (2016). 多氯联苯的类植物生长素生物学效应研究. 硕士论文. 保定: 河北农业大学. pp. 36.
[15] 曾凡锁, 钱晶晶, 康君, 王红艳, 王亦洲, 詹亚光 (2009). 转基因白桦中GUS基因表达的定量分析. 植物学报 44, 484-490.
doi: 10.3969/j.issn.1674-3466.2009.04.010
[16] 张晓丹, 才满, 张爽, 杜克久 (2017). 4-BDE胁迫对毛白杨组培苗不定根发生的影响. 环境化学 36, 514-520.
doi: 10.7524/j.issn.0254-6108.2017.03.2016070101
[17] 周佳佳 (2013). 多氯联苯与邻苯二甲酸酯污染对油菜生长的影响及累积效应研究. 硕士论文. 泰安: 山东农业大学. pp. 15-25.
doi: 10.7666/d.Y2303249
[18] 周琼芝 (2016). 低浓度QACs对小球藻生长及氮磷去除的毒物兴奋效应. 硕士论文. 湘潭: 湘潭大学. pp. 30-45.
[19] 朱鸿雁 (2012). 新生SD大鼠联合暴露苯并芘和多氯联苯对血清睾酮水平的影响及表观遗传机制对睾酮合成酶的调控作用. 硕士论文. 上海: 复旦大学. pp. 10-17.
[20] AKen BV, Correa PA, Schnoor JL (2010). Phytoremediation of polychlorinated biphenyls: new trends and promises.Environ Sci Technol 44, 2767-2776.
doi: 10.1021/es902514d
[21] Borja J, Taleon DM, Auresenia J, Gallardo S (2005). Polychlorinated biphenyls and their biodegradation.Process Biochem 40, 1999-2013.
doi: 10.1016/j.procbio.2004.08.006
[22] Christian M, Hannah WB, Lüthen H, Jones AM (2008). Identification of auxins by a chemical genomics approach.J Exp Bot 59, 2757-2767.
doi: 10.1093/jxb/ern133 pmid: 18515827
[23] Donnelly PK, Hegde RS, Fletcher JS (1994). Growth of PCB-degrading bacteria on compounds from photosynthetic plants.Chemosphere 28, 981-988.
doi: 10.1016/0045-6535(94)90014-0
[24] Fletcher JS, Hegde RS (1995). Release of phenols by perennial plant roots and their potential importance in bioremediation.Chemosphere 31, 3009-3016.
doi: 10.1016/0045-6535(95)00161-Z
[25] Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V (2009). In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass(Zostera marina). Ecol Eng 35, 1395-1404.
[26] Jefferson RA, Kavanagh TA, Bevan MW (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.EMBO J 6, 3901-3907.
doi: 10.1089/dna.1987.6.583 pmid: 3327686
[27] Liu JY, Schnoor JL (2008). Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure.Chemosphere 73, 1608-1616.
doi: 10.1016/j.chemosphere.2008.08.009 pmid: 2668963
[28] Martinez A, Erdman NR, Rodenburg ZL, Eastling PM, Hornbuckle KC (2012). Spatial distribution of chlordanes and PCB congeners in soil in Cedar Rapids, lowa, USA.Environ Pollut 161, 222-228.
doi: 10.1016/j.envpol.2011.10.028
[29] Schulz H (1887). Zur Lehre von der Arzneiwirkung.Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 108, 423-445.
doi: 10.1007/BF02281473
[30] Solorzano-Ochoa G, de la Rosa DA, Maiz-Larralde P, Gullett BK, Tabor DG, Touati A, Wyrzykowska-Ceradini B, Fiedler H, Abel T, Carroll WF (2012). Open burning of household waste: effect of experimental condition on combustion quality and emission of PCDD, PCDF and PCB.Chemosphere 87, 1003-1008.
doi: 10.1016/j.chemosphere.2011.11.038 pmid: 22189377
[31] Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005). Auxin and light control of adventitious rooting in Arabidopsis require ARGONAU- TE1.Plant Cell 17, 1343-1359.
doi: 10.1105/tpc.105.031625
[32] Southam CM, Erlich J (1943). Effects of extract of western red-cedar heartwood on certain wood-decaying fungi in culture.Phytopathology 33, 517-524.
[33] Stebbing ARD (1982). Hormesis—The stimulation of growth by low levels of inhibitors.Sci Total Environ 22, 213-234.
doi: 10.1016/0048-9697(82)90066-3
[34] Surpin M, Rojas-Pierce M, Carter C, Hicks GR, Vasquez J, Raikhel NV (2005). The power of chemical genomics to study the link between endomembrane system components and the gravitropic response.Proc Natl Acad Sci USA 102, 4902-4907.
doi: 10.1073/pnas.0500222102 pmid: 555711
[35] Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements.Plant Cell 9, 1963-1971.
doi: 10.1105/tpc.9.11.1963
[36] Verbeke P, Clark BFC, Rattan SIS (2000). Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol 35, 787-794.
doi: 10.1016/S0531-5565(00)00143-1 pmid: 11053669
[37] Xu J, Yin HX, Liu XJ, Li X (2010). Salt affects plant Cd- stress responses by modulating growth and Cd accumulation.Planta 231, 449-459.
doi: 10.1007/s00425-009-1070-8 pmid: 19943170
[38] Zeeb BA, Amphlett JS, Rutter A, Reimer KJ (2006). Potential for phytoremediation of polychlorinated biphenyl-(PCB)-contaminated soil.Int J Phytoremediat 8, 199-221.
doi: 10.1080/15226510600846749 pmid: 17120525
[39] Zhang Y, Luo XJ, Mo L, Wu JP, Mai BX, Peng YH (2015). Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China. Chemosphere 137, 25-32.
doi: 10.1016/j.chemosphere.2015.04.029 pmid: 25974192
[1] Daoxin Xie. New insight into strigolactone signaling [J]. Chinese Bulletin of Botany, 2020, 55(4): 0-0.
[2] Jiahui Xu, Yujia Dai, Xiaofeng Luo, Kai Shu, Weiming Tan. Thoughts and Applications of Chemical Biology in Phytohormonal Research [J]. Chinese Bulletin of Botany, 2020, 55(3): 369-381.
[3] Fan Yegeng, Qiu Lihang, Huang Xing, Zhou Huiwen, Gan Chongkun, Li Yangrui, Yang Rongzhong, Wu Jianming, Chen Rongfa. Expression Analysis of Key Genes in Gibberellin Biosynthesis and Related Phytohormonal Dynamics During Sugarcane Internode Elongation [J]. Chinese Bulletin of Botany, 2019, 54(4): 486-496.
[4] Guo Jia, Li Yansu, He Chaoxing, Yan Yan, Yu Xianchang. Establishing a High-efficiency Regeneration System in Pumpkin (Cucurbita moschata) [J]. Chinese Bulletin of Botany, 2019, 54(4): 539-546.
[5] Wang Xiaolong, Liu Fengzhi, Shi Xiangbin, Wang Xiaodi, Ji Xiaohao, Wang Zhiqiang, Wang Baoliang, Zheng Xiaocui, Wang Haibo. Evolution and Expression of NCED Family Genes in Vitis vinifera [J]. Chinese Bulletin of Botany, 2019, 54(4): 474-485.
[6] Hua Wenping,Chen Chen,Zhi Yuan,Liu Li,Wang Zhezhi,Li Cuiqin. Effect of SmGGPPS2 Expression on Tanshinones Biosynthesis in Salvia miltiorrhiza [J]. Chinese Bulletin of Botany, 2019, 54(2): 217-226.
[7] Haiwei Shuai, Yongjie Meng, Feng Chen, Wenguan Zhou, Xiaofeng Luo, Wenyu Yang, Kai Shu. Phytohormone-mediated Plant Shade Responses [J]. Chinese Bulletin of Botany, 2018, 53(1): 139-148.
[8] Sun Wanmei, Wang Xiaozhu, Han Erqin, Han Li, Sun Liping, Peng Zaihui, Wang Bangjun. Advances in the Functions of Immunophilins in Plants [J]. Chinese Bulletin of Botany, 2017, 52(6): 808-819.
[9] Zheng Jun, Qiao Ling, Zhao Jiajia, Qiao Linyi, Zhang Shichang, Chang Jianzhong, Tang Caiguo, Yang Sanwei. Whole-genome Analysis of CCT Gene Family and Their Responses to Phytohormones in Aegilops tauschii [J]. Chinese Bulletin of Botany, 2017, 52(2): 188-201.
[10] Ying Bao*, Jiaxiao Du, Xiang Jing, Si Xu. Sequence Divergence and Expression Specificity of the Starch Synthase Gene Family in Oryza officinalis Leaf [J]. Chinese Bulletin of Botany, 2015, 50(6): 683-690.
[11] Tao Wang, Menglong Chen, Ling Liu, Chuanli Ning, Binhua Cai, Zhen Zhang, Yushan Qiao. Changes in Genome and Gene Expression During Plant Polyploidization [J]. Chinese Bulletin of Botany, 2015, 50(4): 504-515.
[12] Yuanbao Cai, Xiangyan Yang, Guangming Sun, Qiang Huang, Yeqiang Liu, Shaopeng Li, Zhili Zhang. Cloning of Flowering-related Gene AcMADS1 and Characterization of Expression in Tissues of Pineapple (Ananas comosus) [J]. Chinese Bulletin of Botany, 2014, 49(6): 692-703.
[13] Chunhong Li, Sanxiong Fu, Cunkou Qi. Microarray Analysis of Genes Expressed in Brassica napus Stigma [J]. Chinese Bulletin of Botany, 2014, 49(3): 246-253.
[14] Wenqi Li, Mengbin Ruan, Bin Wang, Pingjuan Zhao, Ming Peng. cDNA Cloning and Expression Patterns of SYP Genes in Manihot esculenta [J]. Chinese Bulletin of Botany, 2014, 49(1): 63-77.
[15] Guiwei Zhang, Jue Zeng, Wei Guo, Qiong Luo. Bioinformatics Analysis of the AT-hook Gene Family in Rice [J]. Chinese Bulletin of Botany, 2014, 49(1): 49-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hu Shi-yi. Fertilization in Plants IV. Fertilization Barriers Inoompalibilty[J]. Chinese Bulletin of Botany, 1984, 2(23): 93 -99 .
[2] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chinese Bulletin of Botany, 2003, 20(03): 373 -382 .
[3] . [J]. Chinese Bulletin of Botany, 1994, 11(专辑): 65 .
[4] . [J]. Chinese Bulletin of Botany, 1996, 13(专辑): 103 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chinese Bulletin of Botany, 1999, 16(02): 150 -156 .
[6] Chen Zheng. Arabidopsis thaliana as a Model Species for Plant Molecular Biology Studies[J]. Chinese Bulletin of Botany, 1994, 11(01): 6 -11 .
[7] . [J]. Chinese Bulletin of Botany, 1996, 13(专辑): 13 -16 .
[8] LEI Xiao-Yong HUANG LeiTIAN Mei-ShengHU Xiao-SongDAI Yao-Ren. Isolation and Identification of AOX (Alternative Oxidase) in ‘Royal Gala’ Apple Fruits[J]. Chinese Bulletin of Botany, 2002, 19(06): 739 -742 .
[9] Chunpeng Yao;Na Li. Research Advances on Abscisic Acid Receptor[J]. Chinese Bulletin of Botany, 2006, 23(6): 718 -724 .
[10] Li Wang, Qinqin Wang, Youqun Wang. Cytochemical Localization of ATPase and Acid Phosphatase in Minor Veins of the Leaf of Vicia faba During Different Developmental Stages[J]. Chinese Bulletin of Botany, 2014, 49(1): 78 -86 .