Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (2): 175-182.DOI: 10.11983/CBB20133
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Qilu Yu, Jiangzhe Zhao, Xiaoxian Zhu, Kewei Zhang()
Received:
2020-07-26
Accepted:
2020-12-07
Online:
2021-03-01
Published:
2021-03-17
Contact:
Kewei Zhang
Qilu Yu, Jiangzhe Zhao, Xiaoxian Zhu, Kewei Zhang. Regulation of Rice Growth by Root-secreted Phytohormones[J]. Chinese Bulletin of Botany, 2021, 56(2): 175-182.
Figure 1 The phenotype of 12-day rice seedlings grown in different water culture systems (A) Phenotypes of rice seedlings grown in different water culture systems for 12 days (bar=3 cm); (B) Plant height of rice seedlings grown in different water culture systems for 12 days (n=30); (C) Fresh weight of rice seedlings grown in different water culture systems for 12 days (n=30); (D) 0.1 and 4 L containers used in this experiment and the phenotypes of rice seedlings grown in them, respectively (bar=3 cm). ** significant difference at P<0.01; *** significant differences at P<0.001.
Figure 2 Hormone profiling of shoot of rice seedlings grown in different water culture sytems (A)-(J) The ABA, SA, JA-Ile, IAA, tZ, tZR, cZ, cZR, iP, and iPR contents in shoot of rice seedlings after planting in 0.1 and 4 L water culture systems for 12 days, respectively. * significant differences at P<0.05; *** significant differences at P<0.001.
Figure 3 Profiling of phytohormones in the root of rice after planting in different water culture systems (A)-(J)The ABA, SA, JA-Ile, IAA, tZ, tZR, cZ, cZR, iP, and iPR contents in the root of rice after planting in 0.1 and 4 L water culture systems, respectively. * significant differences at P<0.05; *** significant differences at P<0.001.
Figure 4 Phytohormone profiling of the different hydroculture systems (A)-(H) The ABA, SA, JA-Ile, IAA, cZ, cZR, iP, and iPR contents in 0.1 and 4 L water culture systems after being planted with rice seedlings for 12 days, respectively. * significant differences at P<0.05; *** significant differences at P<0.001.
[1] | 程立超, 曾令鑫 (2020). 不同水培条件绿萝生长状况研究. 中国林副特产 (1),24-26, 30. |
[2] |
代宇佳, 罗晓峰, 周文冠, 陈锋, 帅海威, 杨文钰, 舒凯 (2019). 生物和非生物逆境胁迫下的植物系统信号. 植物学报 54,255-264.
DOI URL |
[3] | 甘林, 代玉立, 杨秀娟, 杜宜新, 石妞妞, 阮宏椿, 陈福如 (2020). 香蕉抗(感)病品种根系分泌物对枯萎病菌和枯草芽孢杆菌的生物效应. 应用生态学报 31,2279-2286. |
[4] | 洪常青, 聂艳丽 (2003). 根系分泌物及其在植物营养中的作用. 生态环境 12,508-511. |
[5] | 梁银丽, 康绍忠, 张成娥 (1999). 不同水分条件下小麦生长特性及氮磷营养的调节作用. 干旱地区农业研究 17(4),58-64. |
[6] | 罗晓蔓, 周书宇, 杨雪 (2019). 植物根系分泌物的分类和作用. 安徽农业科学 47(4),37-39, 45. |
[7] | 任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林 (2020). 高等植物适应干旱生境研究进展. 草学 (3),4-15. |
[8] | 孙珂, 周亚峰, 黄雅敏, 李会松, 孔倩倩 (2020). 果菜类蔬菜水培研究进展. 农业科技通讯 (3),25-27. |
[9] | 岳杨, 曹世文, 王颖 (2010). 辽河下游平原区淹灌条件下水稻的需水规律. 东北水利水电 (2),58-59. |
[10] | 张奇, 张清旭, 庞晓敏, 叶江华, 王海斌, 贾小丽, 何海斌 (2020). 稗草根系分泌物对水稻种子萌发和苗期生长的影响. 亚热带农业研究 16,8-15. |
[11] | 张瑜, 刘玉红, 扎西顿珠, 杨亚辉, 代安国 (2020). 不同营养液浓度对水培生菜生长的影响. 西藏农业科技 42,54-56. |
[12] | Albrecht T, Argueso CT (2017). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann Bot 119,725-735. |
[13] |
Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D (2017). Regulation of proline biosynthesis and resistance to drought stress in two barley ( Hordeum vulgare L.) genotypes of different origin. Plant Physiol Biochem 118,427-437.
DOI URL |
[14] | Bhaskara GB, Nguyen TT, Verslues PE (2012). Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol 160,379-395. |
[15] |
Bielach A, Hrtyan M, Tognetti VB (2017). Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18,1427.
DOI URL |
[16] |
Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42,998-1018.
DOI PMID |
[17] |
Fang YJ, Xiong LZ (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72,673-689.
DOI URL |
[18] |
Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Peñuelas J (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 8,12696.
DOI URL |
[19] |
Hu HH, Xiong LZ (2014). Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65,715- 741.
DOI URL |
[20] |
Huang JL, Zhai JQ, Jiang T, Wang YJ, Li XC, Wang R, Xiong M, Su BD, Thomas F (2018). Analysis of future drought characteristics in China using the regional climate model CCLM. Climate Dyn 50,507-525.
DOI URL |
[21] | Kramer PJ (1983). Water Relation of Plant. New York: Academic Press. pp.168-191. |
[22] |
Luo J, Zhou JJ, Zhang JZ (2018). Aux/ IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 19,259.
DOI URL |
[23] | Mohammadian MA, Watling JR, Hill RS (2007). The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecol 31,93-101. |
[24] | North GB, Nobel PS (1992). Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120,9-19. |
[25] | Ruan JJ, Zhou YX, Zhou ML, Yan J, Khurshid M, Weng WF, Cheng JP, Zhang KX (2019). Jasmonic acid signaling pathway in plants. Int J Mol Sci 20,2479. |
[26] | Seki M, Umezawa T, Urano K, Shinozaki K (2007). Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10,296-302. |
[27] | Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol 115,327-334. |
[28] | Takahashi F, Kuromori T, Sato H, Shinozaki K (2018). Regulatory gene networks in drought stress responses and resistance in plants. Adv Exp Med Biol 1081,189-214. |
[29] | Tardieu F (2013). Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol 4,17. |
[30] | Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM (2016). Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67,4209- 4220. |
[31] |
Verma V, Ravindran P, Kumar PP (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16,86.
DOI URL |
[32] |
Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2017). Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep 36, 1971- 1984.
DOI URL |
[33] |
Vlot AC, Dempsey DMA, Klessig DF (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47,177-206.
DOI URL |
[34] |
Wybouw B, De Rybel B (2019). Cytokinin—a developing story. Trends Plant Sci 24,177-185.
DOI URL |
[35] |
Xiong LM, Schumaker KS, Zhu JK (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14,S165- S183.
DOI URL |
[36] |
Zhao JZ, Yu NN, Ju M, Fan B, Zhang YJ, Zhu EG, Zhang MY, Zhang KW (2019). ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. J Exp Bot 70,6277-6291.
DOI URL |
[37] |
Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010). Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca 2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154,1232-1243.
DOI URL |
[1] | Jiangyuan Shang, Yan Chun, Xueyong Li. Map-based Cloning and Natural Variation Analysis of the PAL3 Gene Controlling Panicle Length in Rice [J]. Chinese Bulletin of Botany, 2021, 56(5): 520-532. |
[2] | Jian-Min Zhou. A Ca2+-ROS Signaling Axis in Rice Provides Clues to Rice-pathogen Coevolution and Crop Improvements [J]. Chinese Bulletin of Botany, 2021, 56(5): 513-515. |
[3] | Sanhe Li, Kai Liu, Wenjun Zha, Huashan Xu, Peide Li, Lei Zhou, Aiqing You. Effects of transgenic rice H23 with BPH9 and Bar genes resistant to brown planthopper and herbicide on non-target organisms [J]. Biodiv Sci, 2021, 29(4): 488-494. |
[4] | Chenyang Pan, Yue Zhang, Han Lin, Qianyu Chen, Kairu Yang, Jiaji Jiang, Mengjia Li, Tao Lu, Kexin Wang, Mei Lu, Sheng Wang, Hanfei Ye, Yuchun Rao, Haitao Hu. QTL Mapping and Candidate Gene Analysis on Rice Leaf Water Potential [J]. Chinese Bulletin of Botany, 2021, 56(3): 275-283. |
[5] | Jiaxin Li, Xia Li, Yinfeng Xie. Mechanism on Drought Tolerance Enhanced by Exogenous Trehalose in C4-PEPC Rice [J]. Chinese Bulletin of Botany, 2021, 56(3): 296-314. |
[6] | Jianru Yue, Yunjian He, Tianqi Qiu, Nannan Guo, Xueping Han, Xianling Wang. Research Advances in the Molecular Mechanisms of Plant Microtubules in Regulating Hypocotyl Elongation [J]. Chinese Bulletin of Botany, 2021, 56(3): 363-371. |
[7] | Jianhua Jiang, Xiaojing Dang, Wenhao Yao, Mengzhu Hu, Yuting Wang, Changmin Hu, Ying Zhang, Dezheng Wang. Genetic Analysis of Four Stigma Traits with Genic Male Sterile Line in Rice (Oryza sativa) [J]. Chinese Bulletin of Botany, 2021, 56(3): 284-295. |
[8] | Xibao Li, Minyi Lai, Shan Liang, Xiaojing Wang, Caiji Gao, Chao Yang. Function and Transcriptional Regulation of Autophagy-related Genes in Plants [J]. Chinese Bulletin of Botany, 2021, 56(2): 201-217. |
[9] | Lubin Tan, Chuanqing Sun. Rapid Domestication of Wild Allotetraploid Rice: Starting a New Era of Human Agricultural Civilization [J]. Chinese Bulletin of Botany, 2021, 56(2): 134-137. |
[10] | Wei Xuan, Guohua Xu. Genomic Basis of Rice Adaptation to Soil Nitrogen Status [J]. Chinese Bulletin of Botany, 2021, 56(1): 1-5. |
[11] | Chenyang Pan, Hanfei Ye, Weiyong Zhou, Sheng Wang, Mengjia Li, Mei Lu, Sanfeng Li, Xudong Zhu, Yuexing Wang, Yuchun Rao, Gaoxing Dai. QTL Mapping of Candidate Genes Involved in Cd Accumulation in Rice Grain [J]. Chinese Bulletin of Botany, 2021, 56(1): 25-32. |
[12] | Sunlu Chen, Chengfang Zhan, Hong Jiang, Linhan Li, Hongsheng Zhang. Advances in the Molecular Mechanism and Genetic Regulation of Grain-filling Rate in Rice [J]. Chinese Bulletin of Botany, 2021, 56(1): 80-89. |
[13] | Ningxi Song, Yingfeng Xie, Xia Li. Effects of Epigenetic Mechanisms on C4 Phosphoenolpyruvate Carboxylase Transgenic Rice (Oryza sativa) Seed Germination Under Drought Stress [J]. Chinese Bulletin of Botany, 2020, 55(6): 677-692. |
[14] | Jiajia Li, Miaochun Fan, Zhouping Shangguan. Research Advances in the Main Ecological Functions of Root Exudates [J]. Chinese Bulletin of Botany, 2020, 55(6): 788-796. |
[15] | Jian-Min Zhou, Lidong Cao. Antifungal Compounds Come in Handy [J]. Chinese Bulletin of Botany, 2020, 55(5): 533-536. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||