Chin Bull Bot ›› 2017, Vol. 52 ›› Issue (6): 797-807.doi: 10.11983/CBB16197

• SPECIAL TOPICS • Previous Articles     Next Articles

Research Progress of Fragrance Gene and Its Application in Rice Breeding

Peng Bo1,2,*(), Sun Yanfang1,2, Chen Baoyang1,2, Sun Ruimeng1,2, Kong Dongyan1,2, Pang Ruihua1,2, Li Xianwen1,2, Song Xiaohua3, Li Huilong3, Li Jintao1,2, Zhou Qiying1,2, Liu Lin4, Duan Bin3, , Song Shizhi3,*()   

  1. 1College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
    2Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China
    3Xinyang Academy of Agricultural Sciences, Xinyang 464000, China
    4School of Sciences and Technology, Xinyang University, Xinyang 464000, China
  • Received:2016-10-11 Accepted:2017-01-10 Online:2018-02-22 Published:2017-11-01
  • Contact: Peng Bo,Song Shizhi E-mail:pengbo@xynu.edu.cn;ssz669@163.com

Abstract:

Rice is a staple food for more than 3 billion people in the world, and it is one of the most important food crops. As one of the types of cultivated rice, fragrant rice is favoured worldwide by consumers because of its agreeable scent. In recent years, with the rapid development of rice functional genomics and sequencing technology, great progress has been made in understanding the fragrant gene in rice, and a series of functional markers has been developed for screening the fragrant gene and breeding new rice varieties. This paper mainly reviews the progress in the genetic basis, gene function and regulation of the fragrant gene and the development and application of gene functional markers in rice. It provides useful references for the cultivation of new varieties of fragrant rice.

Key words: rice, fragrance gene, application, genetic breeding

Figure 1

Possible synthesis pathway of 2-acetyl-1-pyrroline (2-AP) in rice"

Table 1

Development of functional markers for Badh2 gene in rice (He and Park, 2015)"

功能标记 引物序列(5'-3') 位置 退火温度(°C) PCR产物大小(bp) (非香/香)
FMU1-2 F: TCCCACCACCACTCCACA 5′UTR 61 163/160
R: ACGAAGAGCTGCCGCTGC
FME2-7 F: ACGAAGAGCTGCCGCTGC 第2外显子 61 78/71
R: GCGATTGCGCGGAGGTACT
FME7 F: TCCTGTAATCATGTATACCC 第7外显子 50 151/143
R: AATTTGGAAACAAACCTT
FME12-3 F: TTGGTCCAGTGCTCTGTGTG 第12外显子 58 192/189
R: GCACCAGCCAGACCATAAC
FME13 F: TTGGTCCAGTGCTCTGTGTG 第13外显子 58 192/195
R: GCACCAGCCAGACCATAAC
FME14 F: TCGATGCCGGAATTATCTGGGTGA 第14外显子 61 60, 205/266
R: TCCCCACGGCTCATCGGAGG
[1] 白现广, 程在全, 蔺忠龙, 吕广磊, 黄兴奇 (2009). 云南地方香稻与非香稻遗传多样性比较. 安徽农业科学 37, 2404-2406.
doi: 10.3969/j.issn.0517-6611.2009.06.030
[2] 杜雪树, 夏明元, 李进波, 万丙良, 查中萍, 戚华雄 (2009). 分子标记辅助选择选育香稻恢复系. 华中农业大学学报 28, 651-654.
doi: 10.3321/j.issn:1000-2421.2009.06.002
[3] 黄庭旭, 江文清, 游晴如, 周仕全, 刘端华, 谢冬容, 邱慧明 (2006). 籼型香稻恢复系大粒香-15的选育与利用. 福建农业学报 21, 83-88.
doi: 10.3969/j.issn.1008-0384.2006.02.001
[4] 江青山, 林纲, 赵德明, 李云武, 贺兵, 王峰 (2008). 香型优质不育系宜香1A的特征特性及利用. 中国稻米 (2), 35-37.
[5] 况浩池, 曾正明, 刘国民, 罗俊涛, 文韶山, 陈光珍, 杨扬 (2007). 优质、香型籼三系不育系泸香91A的特征特性和高产繁殖技术. 中国稻米 (4), 28-29.
[6] 黎舒佳, 高谨, 李家洋, 王永红 (2015). 独脚金内酯调控水稻分蘖的研究进展. 植物学报 50, 539-548.
[7] 刘光春, 陆贤军, 任光俊, 高方远, 李治华, 任明鑫, 唐军 (2008). 杂交香稻新组合川香优425的选育与栽培技术. 中国稻米 (2), 42-43.
[8] 刘化龙, 张宇, 邹德堂, 赵宏伟, 王敬国, 孙健 (2014). 香稻种质资源筛选及香味基因遗传研究. 作物杂志 (6), 21-26.
[9] 彭波, 庞瑞华, 孙艳芳, 耿乐萍, 宋晓华, 李慧龙, 周棋赢, 孔冬艳, 田夏雨, 宋世枝 (2016a). 香稻胚乳的垩白性状研究及扫描电镜观察. 南方农业学报 47, 1635-1641.
doi: 10.3969/jissn.2095-1191.2016.10.1635
[10] 彭波, 孙艳芳, 李琪瑞, 李丹, 庞瑞华, 周棋赢, 宋晓华, 李慧龙, 宋世枝 (2016b). 水稻垩白性状的遗传研究进展. 信阳师范学院学报(自然科学版) 29, 304-312.
[11] 唐傲, 邵高能, 胡培松 (2009). 水稻香味基因的研究进展. 中国稻米 (4), 1-4.
doi: 10.3969/j.issn.1006-8082.2009.04.001
[12] 王丰, 李金华, 柳武革, 廖亦龙, 朱满山, 刘振荣, 黄慧君, 黄德娟 (2008). 一种水稻香味基因功能标记的开发. 中国水稻科学 22, 347-352.
[13] 王军, 杨杰, 陈志德, 仲维功 (2008). 水稻香米基因标记的开发与应用. 分子植物育种 6, 1209-1212.
doi: 10.3969/j.issn.1672-416X.2008.06.030
[14] 徐辰武, 莫惠栋 (1995). 胚乳性状的质量-数量分析. 江苏农学院学报 16, 9-13.
[15] 徐小龙, 赵国超, 李建粤 (2011). 24种香稻品种甜菜碱醛脱氢酶2基因突变位点的分析及分子标记开发. 植物分类与资源学报 33, 667-673.
doi: 10.3724/SP.J.1143.2011.11019
[16] 许言福, 黄菊, 王英存, 王杰, 李建粤 (2015). 两种筛选水稻badh2-E2类型香味基因分子标记的建立. 分子植物育种 13, 2441-2445.
[17] 闫影, 诸光明, 张丽霞, 万常照, 曹黎明, 赵志鹏, 吴书俊 (2015). 水稻香味基因分子标记的开发及应用. 西北植物学报 35, 269-274.
doi: 10.7606/j.issn.1000-4025.2015.02.0269
[18] 张江丽, 李苏洁, 李娟, 普世皇, 普玉姣, 张亮, 谭亚玲, 陈丽娟, 谭学林, 金寿林, 文建成 (2015). 不同来源水稻种质资源香味基因badh2位点的鉴定. 分子植物育种 13, 727-733.
[19] 张涛, 张红宇, 蒋开锋, 徐培州, 汪旭东, 吴先军, 郑家奎 (2008). 水稻香味基因的精细定位. 分子植物育种 6, 1038-1044.
doi: 10.3969/j.issn.1672-416X.2008.06.002
[20] 赵志鹏, 李刚, 吴书俊, 陆家安 (2009). 香稻研究进展. 上海农业学报 25(2), 110-114.
[21] Ahn SN, Bollich CN, Tanksley SD (1992). RFLP tagging of a gene for aroma in rice.Theor Appl Genet 84, 825-828.
doi: 10.1007/BF00227391 pmid: 24201481
[22] Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK (2008). Mapping of quantitative trait loci for basmati quality traits in rice ( Oryza sativa L.). Mol Breed 21, 49-65.
doi: 10.1007/s11032-007-9108-8
[23] Arikit S, Yoshihashi T, Wanchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A (2011). Deficiency in the amino aldehyde dehydrogenase encoded byGm- AMADH2, the homologue of rice Os2AP, enhances 2- acetyl-1-pyrroline biosynthesis in soybeans(Glycine max L.). Plant Biotechnol J 9, 75-87.
[24] Birla DS, Malik K, Sainger M, Chaudhary D, Jaiwal R, Jaiwal PK (2017). Progress and challenges in improving the nutritional quality of rice ( Oryza sativa L.). Crit Rev Food Sci Nutr 57, 2455-2481.
doi: 10.1080/10408398.2015.1084992 pmid: 26513164
[25] Bradbury LMT, Fitzgerald TL, Henry RJ, Jin QS, Waters DLE (2005a). The gene for fragrance in rice.Plant Biotechnol J 3, 363-370.
doi: 10.1111/j.1467-7652.2005.00131.x pmid: 17129318
[26] Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ (2008). Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice.Plant Mol Biol 68, 439-449.
doi: 10.1007/s11103-008-9381-x pmid: 18704694
[27] Bradbury LMT, Henry RJ, Jin QS, Reinke RF, Waters DLE (2005b). A perfect marker for fragrance genotyping in rice.Mol Breed 16, 279-283.
doi: 10.1007/s11032-005-0776-y
[28] Chen ML, Wei XJ, Shao GN, Tang SQ, Luo J, Hu PS (2012). Fragrance of the rice grain achieved via artificial microRNA-induced down-regulation of OsBADH2. Plant Breed 131, 584-590.
doi: 10.1111/j.1439-0523.2012.01989.x
[29] Chen SH, Wu J, Yang Y, Shi WW, Xu ML (2006). The fgr gene responsible for rice fragrance was restricted within 69 kb. Plant Sci 171, 505-514.
doi: 10.1016/j.plantsci.2006.05.013
[30] Chen SH, Yang Y, Shi WW, Ji Q, He F, Zhang ZD, Cheng ZK, Liu XN, Xu ML (2008). Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-ace- tyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20, 1850-1861.
[31] Cordeiro GM, Christopher MJ, Henry RJ, Reinke RF (2002). Identification of microsatellite markers for fragr- ance in rice by analysis of the rice genome sequence.Mol Breed 9, 245-250.
doi: 10.1023/A:1020350725667
[32] Daygon VD, Prakash S, Calingacion M, Riedel A, Ovenden B, Snell P, Mitchell J, Fitzgerald M (2016). Understanding the jasmine phenotype of rice through metabolite profiling and sensory evaluation.Metabolomics 12, 63.
doi: 10.1007/s11306-016-0989-6
[33] Dong YJ, Tsuzuki E, Terao H, Yosimura A, Yasui H (2001a). Inheritance of aroma and identification of RELP markers linked to aroma genes in two rice cultivars ( Oryza sativa L.). Bull Fac Agric 48, 59-65.
[34] Dong YJ, Tsuzuki E, Terao H (2001b). Trisomic genetic analysis of aroma in three Japanese native rice varieties ( Oryza sativa L.). Euphytica 117, 191-196.
doi: 10.1023/A:1026502115436
[35] Fitzgerald MA, Sackville Hamilton NR, Calingacion MN, Verhoeven HA, Butardo VM (2008). Is there a second fragrance gene in rice?Plant Biotechnol J 6, 416-423.
doi: 10.1111/pbi.2008.6.issue-4
[36] Fu HY, Kim SY, Park WD (1995). High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose syn- thase gene require 5' and 3' flanking sequences and the leader intron.Plant Cell 7, 1387-1394.
[37] Garland S, Lewin L, Blakeney A, Reinke R, Henry R (2000). PCR-based molecular markers for the fragrance gene in rice ( Oryza sativa L.). Theor Appl Genet 101, 364-371.
[38] Goufo P, Falco V, Brites C, Wessel DF, Kratz S, Rosa EAS, Carranca C, Trindade H (2014). Effect of elevated carbon dioxide concentration on rice quality: nutritive val- ue, color, milling, cooking, and eating qualities.Cereal Chem J 91, 513-521.
doi: 10.1094/CCHEM-12-13-0256-R
[39] Halford NG, Curtis TY, Chen ZW, Huang JH (2014). Effects of abiotic stress and crop management on cereal grain composition: implications for food quality and safety.J Exp Bot 66, 1145-1156.
doi: 10.1093/jxb/eru473 pmid: 25428997
[40] Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014). Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12, 934-940.
doi: 10.1111/pbi.12201 pmid: 24851712
[41] He Q, Park YJ (2015). Discovery of a novel fragrant allele and development of functional markers for fragrance in rice.Mol Breed 35, 217.
doi: 10.1007/s11032-015-0412-4
[42] He Q, Yu J, Kim TS, Cho YH, Lee YS, Park YJ (2015). Resequencing reveals different domestication rate for BA- DH1 and BADH2 in rice(Oryza sativa). PLoS One 10, e0134801.
[43] Jeon JS, Lee S, Jung KH, Jun SH, Kim C, An G (2000). Tissue-preferential expression of a rice α-tubulin gene, Os- TubA1, mediated by the first intron. Plant Physiol 12, 1005-1014.
[44] Jin QS, Qin BQ, Yan WC, Luo RB (1995). Tagging of a gene for aroma in rice by RAPD and RFLP(I).Acta Agric Zhejiangensis 7, 439-442.
[45] Jin QS, Qin BQ, Yan WC, Luo RB (1996). Tagging of a gene for aroma in rice by RAPD and RFLP(II).Acta Agric Zhe- jiangensis 8, 19-23.
[46] Jin QS, Waters D, Cordeiro GM, Henry RJ, Reinke RF (2003). A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice ( Oryza sativa L.). Plant Sci 165, 359-364.
doi: 10.1016/S0168-9452(03)00195-X
[47] Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, Kaga A, Srinives P (2011). A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety ‘Kaori’ and SNAP marker development for the fragrance. Theor Appl Genet 122, 533-541.
doi: 10.1007/s00122-010-1467-6 pmid: 21046066
[48] Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, Sorajjapinun W, Srinives P (2012). Identification of a new fragrance allele in soybean and development of its functional marker.Mol Breed 29, 13-21.
doi: 10.1007/s11032-010-9523-0
[49] Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009). The origin and evolution of fragrance in rice ( Oryza sativa L.). Proc Natl Acad Sci USA 106, 14444-14449.
doi: 10.1073/pnas.0904077106 pmid: 19706531
[50] Kusano M, Yang ZG, Okazaki Y, Nakabayashi R, Fukushima A, Saito K (2015). Using metabolomic approaches to explore chemical diversity in rice.Mol Plant 8, 58-67.
doi: 10.1016/j.molp.2014.11.010 pmid: 25578272
[51] Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice.Nat Biotechnol 30, 390-392.
doi: 10.1038/nbt.2199 pmid: 22565958
[52] Liang Z, Zhang K, Chen KL, Gao CX (2014). Targeted mutagenesis in Zea mays using TALENs and the CRISPR/ Cas system. J Genet Genom 41, 63-68.
doi: 10.1016/j.jgg.2013.12.001 pmid: 24576457
[53] Lorieux M, Petrov M, Huang N, Guiderdoni E, Ghesquière A (1996). Aroma in rice: genetic analysis of a quantitative trait.Theor Appl Genet 93, 1145-1151.
doi: 10.1007/BF00230138 pmid: 24162494
[54] Mahattanatawee K, Rouseff RL (2014). Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-Olfactometry and GC-PFPD.Food Chem 154, 1-6.
doi: 10.1016/j.foodchem.2013.12.105 pmid: 24518308
[55] Mathure SV, Jawali N, Thengane RJ, Nadaf AB (2014). Comparative quantitative analysis of headspace volatiles and their association with BADH2 marker in non-basmati scented, basmati and non-scented rice(Oryza sativa L.) cultivars of India. Food Chem 142, 383-391.
doi: 10.1016/j.foodchem.2013.07.066 pmid: 24001856
[56] Murty DS, Nicodemus KD, House LR (1982). Inheritance of basmati and dimpled seed in sorghum.Crop Sci 22, 1080-1082.
doi: 10.2135/cropsci1982.0011183X002200050046x
[57] Myint KM, Arikit S, Wanchana S, Yoshihashi T, Choo- wongkomon K, Vanavichit A (2012). A PCR-based mar- ker for a locus conferring the aroma in Myanmar rice ( Oryza sativa L.). Theor Appl Genet 125, 887-896.
doi: 10.1007/s00122-012-1880-0 pmid: 22576235
[58] Niu XL, Tang W, Huang WZ, Ren GJ, Wang QL, Luo D, Xiao YY, Yang SM, Wang F, Lu BR, Gao FY, Lu TG, Liu YS (2008). RNAi-directed downregulation of OsBADH2 results in aroma (2-acetyl-1-pyrroline) production in rice(Ory- za sativa L.). BMC Plant Biol 8, 100.
doi: 10.1186/1471-2229-8-100 pmid: 2588449
[59] Ootsuka K, Takahashi I, Tanaka K, Itani T, Tabuchi H, Yoshihashi T, Tonouchi A, Ishikawa R (2014). Genetic polymorphisms in Japanese fragrant landraces and novel fragrant allele domesticated in northern Japan.Breed Sci 64, 115-124.
doi: 10.1270/jsbbs.64.115 pmid: 4065318
[60] Paule CM, Powers JJ (1989). Sensory and chemical examination of aromatic and nonaromatic rices.J Food Sci 54, 343-346.
doi: 10.1111/j.1365-2621.1989.tb03076.x
[61] Peng B, Kong HL, Li YB, Wang LQ, Zhong M, Sun L, Gao GJ, Zhang QL, Luo LJ, Wang GW, Xie WB, Chen JX, Yao W, Peng Y, Lei L, Lian XM, Xiao JH, Xu CG, Li XH, He YQ (2014a).OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5, 4847.
doi: 10.1038/ncomms5847 pmid: 4175581
[62] Peng B, Wang LQ, Fan CC, Jiang GH, Luo LJ, Li YB, He YQ (2014b). Comparative mapping of chalkiness components in rice using five populations across two environments.BMC Genet 15, 49.
doi: 10.1186/1471-2156-15-49 pmid: 24766995
[63] Prathepha P (2009). The fragrance ( >fgr) gene in natural populations of wild rice(Oryza rufipogon Griff.). Genet Re- sour Crop Evol 56, 13-18.
[64] Schieberle P (1990). The role of free amino acids present in yeast as precursors of the odorants 2-acetyl-1-pyrroline and 2-acetyltetrahydropyridine in wheat bread crust.Z Le- bensm Unters Forsch 191, 206-209.
doi: 10.1007/BF01197621
[65] Shan QW, Wang YP, Chen KL, Liang Z, Li J, Zhang Y, Zhang K, Liu JX, Voytas DF, Zheng XL, Zhang Y, Gao CX (2013). Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol Plant 6, 1365-1368.
doi: 10.1093/mp/sss162 pmid: 23288864
[66] Shan QW, Zhang Y, Chen KL, Zhang K, Gao CX (2015). Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13, 791-800.
doi: 10.1111/pbi.12312 pmid: 25599829
[67] Shao GN, Tang A, Tang SQ, Luo J, Jiao GA, Wu JL, Hu PS (2011). A new deletion mutation of fragrant gene and the development of three molecular markers for fragrance in rice.Plant Breed 130, 172-176.
doi: 10.1111/j.1439-0523.2009.01764.x
[68] Shao GN, Tang SQ, Chen ML, Wei XJ, He JW, Luo J, Jiao GA, Hu YC, Xie LH, Hu PS (2013). Haplotype variation at Badh2, the gene determining fragrance in rice. Genomics 101, 157-162.
doi: 10.1016/j.ygeno.2012.11.010 pmid: 23220350
[69] Shi WW, Yang Y, Chen SH, Xu ML (2008). Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties.Mol Bre- ed 22, 185-192.
doi: 10.1007/s11032-008-9165-7
[70] Shi YQ, Zhao GC, Xu XL, Li JY (2014). Discovery of a new fragrance allele and development of functional markers for identifying diverse fragrant genotypes in rice.Mol Breed 33, 701-708.
doi: 10.1007/s11032-013-9986-x
[71] Stocker BD, Roth R, Joos F, Spahni R, Steinacher M, Zaehle S, Bouwman L, Ri X, Prentice IC (2013). Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios.Nat Clim Change 3, 666-672.
doi: 10.1038/nclimate1864
[72] Tian ZX, Qian Q, Liu QQ, Yan MX, Liu XF, Yan CJ, Liu GF, Gao ZY, Tang SZ, Zeng DL, Wang YH, Yu JM, Gu MH, Li JY (2009). Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities.Proc Natl Acad Sci USA 106, 21760-21765.
doi: 10.1073/pnas.0912396106 pmid: 20018713
[73] Trossat C, Rathinasabapathi B, Hanson AD (1997). Trans- genically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropionaldehyde and ω-aminoaldehydes.Plant Physiol 113, 1457-1461.
doi: 10.1104/pp.113.4.1457 pmid: 12223684
[74] Tsuzuki E, Shimokawa E (1990). Inheritance of aroma in rice.Euphytica 46, 157-159.
doi: 10.1007/BF00022309
[75] Voytas DF, Gao CX (2014). Precision genome engineering and agriculture: opportunities and regulatory challenges.PLoS Biol 12, e1001877.
doi: 10.1371/journal.pbio.1001877 pmid: 4051594
[76] Wanchana S, Kamolsukyunyong W, Ruengphayak S, Toojinda T, Tragoonrung S, Vanavichit A (2005). A rapid construction of a physical contig across a 4.5 cM region for rice grain aroma facilitates marker enrichment for positional cloning.Sci Asia 31, 299-306.
doi: 10.2306/scienceasia1513-1874.2005.31.299
[77] Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew.Nat Biotechnol 32, 947-951.
doi: 10.1038/nbt.2969 pmid: 25038773
[78] Wendt T, Holm P, Starker C, Christian M, Voytas D, Brinch-Pedersen H, Holme IB (2013). TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants.Plant Mol Biol 83, 279-285.
doi: 10.1007/s11103-013-0078-4
[79] Yoshihashi T, Huong NTT, Inatomi H (2002). Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety.J Agric Food Chem 50, 2001-2004.
doi: 10.1021/jf011268s pmid: 11902947
[80] Yundaeng C, Somta P, Tangphatsornruang S, Wongpornchai S, Srinives P (2013). Gene discovery and functional marker development for fragrance in sorghum (Sor- ghum bicolor(L.) Moench). Theor Appl Genet 126, 2897-2906.
doi: 10.1007/s00122-013-2180-z pmid: 23975246
[81] Zhao XQ, Fitzgerald M (2013). Climate change: implications for the yield of edible rice.PLoS One 8, e66218.
doi: 10.1371/journal.pone.0066218 pmid: 3680399
[1] Huai-Dong Tian. Method for N-methyl-N-nitrosourea Mutagenesis on Hermaphroditic Germ Cells of Rice [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[2] yuchun Rao Chun Zhou Han Lin. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[3] Jin -Liu Jia-Yu WANG. Detection and Analysis of Dynamic QTL at Three Year for Seed Storability in Rice (Oryza sativa) [J]. Chin Bull Bot, 2019, 54(4): 0-0.
[4] 徐 徐徐云远 chong chongkang. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 0-0.
[5] Wang Xiaolin,Wang Ertao. NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice [J]. Chin Bull Bot, 2019, 54(3): 285-287.
[6] Li Lulu,Yin Wenchao,Niu Mei,Meng Wenjing,Zhang Xiaoxing,Tong Hongning. Functional Analysis of Brassinosteroids in Salt Stress Responses in Rice [J]. Chin Bull Bot, 2019, 54(2): 185-193.
[7] Ye Wenlan,Ma Guolan,Yuan liyanan,Zheng Shiyi,Cheng Linqiao,Fang Yuan,Rao Yuchun. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice [J]. Chin Bull Bot, 2019, 54(2): 277-283.
[8] Yang Dewei,Wang Mo,Han Libo,Tang Dingzhong,Li Shengping. Progress of Cloning and Breeding Application of Blast Resistance Genes in Rice and Avirulence Genes in Blast Fungi [J]. Chin Bull Bot, 2019, 54(2): 265-276.
[9] Chen Lin,Lin Yan,Chen Pengfei,Wang Shaohua,Ding Yanfeng. Effect of Iron Deficiency on the Protein Profile of Rice (Oryza sativa) Phloem Sap [J]. Chin Bull Bot, 2019, 54(2): 194-207.
[10] Xue Zhihui, Chong Kang. Chinese Scientists Make Groundbreaking Discoveries in Clonal Propagation of F1 Hybrids [J]. Chin Bull Bot, 2019, 54(1): 1-3.
[11] Zhu Li, Qian Qian. Astaxanthin Functional Rice: New Idea of Biofortification, New Perspectives for High-quality Rice Breeding [J]. Chin Bull Bot, 2019, 54(1): 4-8.
[12] Zhiyao Tang, Minwei Jiang, Jian Zhang, Xinyue Zhang. Applications of satellite and air-borne remote sensing in biodiversity research and conservation [J]. Biodiv Sci, 2018, 26(8): 807-818.
[13] Zhou Tingting, Rao Yuchun, Ren Deyong. Research Advances in the Cytological and Molecular Mechanisms of Leaf Rolling in Rice [J]. Chin Bull Bot, 2018, 53(6): 848-855.
[14] Lu Dan, Wang Li, Song Fan, Tao Juhong, Zhang Dabing, Yuan Zheng. Cloning and Expression Pattern Analysis of Rice OsJMJ718 Alternative Polyadenylation Sequences During Reproductive Developmental Stage [J]. Chin Bull Bot, 2018, 53(5): 594-602.
[15] Liu Wei, Tong Yong’ao, Bai Jie. Bioinformatics Analysis of tRNA-derived Fragments in Rice Male Gametophyte Development [J]. Chin Bull Bot, 2018, 53(5): 625-633.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ye Ming-wei. Studies on the Development of Cystolith Hair and the Component of Cystolith in Papermulberry (Broussonetia papyrifera)[J]. Chin Bull Bot, 1991, 8(04): 40 -42 .
[2] SONG Jian. Comments on the Appeal from the President Prof. SONG Jian[J]. Chin Bull Bot, 1995, 12(专辑): 5 .
[3] Hongxiao Yang, Jianmin Chu, Jintun Zhang. Wild Plants Inhabiting on the Sand Fore-coasts of Shandong Peninsula[J]. Chin Bull Bot, 2011, 46(1): 50 -58 .
[4] Zumeng Tan;Yunchang Li;Qiong Hu*;Desheng Mei;Jihua Cheng. Advances in Molecular Marker Techniques for Heterosis Application in Rapeseed[J]. Chin Bull Bot, 2008, 25(02): 230 -239 .
[5] Xue Guang-rong;Yang Zhen-ying;Zhu Qin-ying and Wang Guoqing. Research on the Technique for Obtaining Virus-free Plants by Anther Culture in Strawberry[J]. Chin Bull Bot, 1990, 7(01): 22 -26 .
[6] Zhang Xin-shi. Some Significant Disciplines in Modern Ecology[J]. Chin Bull Bot, 1990, 7(04): 1 -6 .
[7] WU Jin-Song CHONG Kang. The Molecular Biology Research on the Action of Jasmonates[J]. Chin Bull Bot, 2002, 19(02): 164 -170 .
[8] LI Yan;LI De-Quan;PAN Hai-Chun;WANG Wei and ZOU Qi. Relations of Cell Wall Elastic Adjustment of Various Position Leaves to Drought Resistance in Soybean[J]. Chin Bull Bot, 1998, 15(03): 38 -42 .
[9] . [J]. Chin Bull Bot, 2000, 17(06): 572 .
[10] YAN Xiao-Long LIAO Hong GE Zhen-Yang LUO Xi-Wen. Root Architectural Characteristics and Phosphorus Acquisition Efficiency in Plants[J]. Chin Bull Bot, 2000, 17(06): 511 -519 .