植物学报 ›› 2019, Vol. 54 ›› Issue (5): 662-673.doi: 10.11983/CBB19100

• 专题论坛 • 上一篇    下一篇

植物响应联合胁迫机制的研究进展

郭倩倩,周文彬()   

  1. 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2019-05-28 接受日期:2019-08-09 出版日期:2019-09-01 发布日期:2020-03-10
  • 通讯作者: 周文彬 E-mail:zhouwenbin@caas.cn
  • 基金资助:
    国家重点研发计划(2016YFD0300102)

Advances in the Mechanism Underlying Plant Response to Stress Combination

Guo Qianqian,Zhou Wenbin()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-05-28 Accepted:2019-08-09 Online:2019-09-01 Published:2020-03-10
  • Contact: Zhou Wenbin E-mail:zhouwenbin@caas.cn

摘要:

自然界中, 植物通常面对多重联合胁迫。在全球气候变化日益加剧的背景下, 多重联合胁迫对植物生长发育及作物产量形成的不利影响日益显著。阐明植物响应和适应联合胁迫的生理与分子机制, 对人们理解植物对自然环境的适应机理, 及培育耐受联合胁迫的新品种有重要意义。研究表明, 植物响应联合胁迫的机制是特异的, 不能简单地从单一胁迫响应叠加来推断。植物遭受联合胁迫时, 各种生理、代谢和信号途径相互作用, 使得植物响应联合胁迫非常复杂。该文综述了植物响应联合胁迫的生理与分子机理的最新进展, 并阐述了植物响应联合胁迫的研究方法。

关键词: 联合胁迫, 逆境, 植物生长发育, 产量, 组学

Abstract:

Under field conditions, biotic and abiotic stresses usually occur simultaneously, and threaten global food security. Uncovering the mechanisms underlying plant response to combinations of two or more stress conditions holds the potential to breed new crop varieties with enhanced stress tolerance. Recent studies have revealed that the response of plants to stress combinations is unique and cannot be directly extrapolated from the response of plants to each of the different stresses. The responses of plants to different combined stresses might integrate with different signaling pathways at multiple levels, including defence responses, transcription factors, hormone signaling and osmolyte biosynthesis. Here, we review the molecular and physiological responses and adaptations of plants to different stress combinations, and provide an update on multi-omics approaches to study combined stresses.

Key words: stress combinations, environmental stress, plant growth and development, yield, omics

图1

植物响应非生物胁迫(干旱、盐和冷害)的ABA依赖与ABA不依赖途径的交互作用网络(改自Roychoudhury et al., 2013)"

表1

联合胁迫之间的相互作用"

联合胁迫类型 植物 文献
负向相互作用 干旱+盐 大麦(Hordeum vulgare) Ahmed et al., 2013
干旱+热 小麦(Triticum aestivum), 大麦, 烟草(Nicotiana tabacum), 拟南芥(Arabidopsis thaliana), 高粱(Sorghum bicolor), 高羊茅(Festuca arundinacea), 棉花(Gossypium spp.), 柑橘(Citrus reticulata) Craufurd and Peacock, 1993; Jiang and Huang, 2001; Rizhsky et al., 2002, 2004; Prasad et al., 2011; Vile et al., 2012
干旱+冷害 甘蔗(Saccharum officinarum) Sales et al., 2013
干旱+UV辐射 拟南芥, 白三叶(Trifolium repens), 云杉(Picea asperata), 油菜(Brassica napus),
柳树(Salix babylonica), 杨树(Populus)
Hofmann et al., 2003; Poulson et al., 2006; Turtola et al., 2006; Sangtarash et al., 2009; Duan et al., 2011; Bandurska et al., 2013
干旱+高光 拟南芥 Giraud et al., 2008
干旱+重金属 红枫(Acer rubrum) de Silva et al., 2012
盐+高温 小麦 Keleş and Öncel, 2002; Wen et al., 2005
盐+臭氧 欧洲白桦(Betula pendula), 鹰嘴豆(Cicer arietinum) Welfare et al., 2002; Kasurinen et al., 2012
高温+臭氧 欧洲白桦, 杨树 Hartikainen et al., 2009; Kasurinen et al., 2012
高温+UV辐射 西芹(Apium graveolens) Walter, 1989
高温+高光 向日葵(Helianthus annuus) Hewezi et al., 2008; Mittler and Blumwald, 2010
冷害+高光 盐藻(Populus tremula) Haghjou et al., 2009
UV辐射+重金属 豌豆(Pisum sativum) Srivastava et al., 2012
正向相互作用 干旱+臭氧 苜蓿(Medicago truncatula), 欧洲白桦, 欧洲山毛榉(Fagus sylvatica) Pääkkönen et al., 1998; Löw et al., 2006; Iyer et al., 2013
干旱+高CO2 高粱 Ottman et al., 2001; Brouder and Volenec, 2008
盐+高温 番茄(Solanum lycopersicon) Rivero et al., 2014
盐+高CO2 莴苣(Lactuca sativa) Pérez-López et al., 2013
盐+硼 玉米(Zea mays) Martínez-Ballesta et al., 2008
臭氧+高CO2 大豆(Glycine max) Booker and Fiscus, 2005; Ainsworth et al., 2008
高CO2+高光 莴苣 Pérez-López et al., 2013
1 杜康兮, 沈文辉, 董爱武 (2018). 表观遗传调控植物响应非生物胁迫的研究进展. 植物学报 53, 581-593.
2 Achuoa EA, Prinsenb E, Höfte M (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol 55, 178-186.
3 Ahmed IM, Dai HX, Zheng WT, Cao FB, Zhang GP, Sun DF, Wu FB (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol Biochem 63, 49-60.
4 Ainsworth EA, Rogers A, Leakey ADB (2008). Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147, 13-19.
5 Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003). Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160, 41-49.
6 Atkinson NJ, Lilley CJ, Urwin PE (2013). Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162, 2028-2041.
7 Averyanov AA, Lapikova VP, Nikolaev ON, Stepanov AI (2000). Active oxygen-associated control of rice blast disease by riboflavin and roseoflavin. Biochemistry 11, 1292-1298.
8 Bai YL, Kissoudis C, Yan Z, Visser RGF, van der Linden G (2018). Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress. Plant J 93, 781-793.
9 Bandurska H, Niedziela J, Chadzinikolau T (2013). Separate and combined responses to water deficit and UV-B radiation. Plant Sci 213, 98-105.
10 Berens ML, Wolinska KW, Spaepen S, Ziegler J, Nobori T, Nair A, Krüler V, Winkelmüller TM, Wang YM, Mine A, Becker D, Garrido-Oter R, Schulze-Lefert P, Tsuda K (2019). Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proc Natl Acad Sci USA 116, 2364-2373.
11 Booker FL, Fiscus EL (2005). The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. J Exp Bot 56, 2139-2151.
12 Brouder SM, Volenec JJ (2008). Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant 133, 705-724.
13 Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME (2012). Decreased CO2 availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot 83, 1-11.
14 Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30, 239-264.
15 Chen TH, Murata N (2008). Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13, 499-505.
16 Coolen S, Proietti S, Hickman R, Davila Olivas NH, Huang PP, Van Verk MC, Van Pelt JA, Wittenberg AHJ, De Vos M, Prins M, Van Loon JJA, Aarts MGM, Dicke M, Pieterse CMJ, Van Wees SCM (2016). Transcriptome dynamics of Arabidopsis during sequential biotic and abiotic stresses. Plant J 86, 249-267.
17 Craufurd PQ, Peacock JM (1993). Effect of heat and drought stress on sorghum (Sorghum bicolor). II. Grain yield. Exp Agric 29, 77-86.
18 Cuin TA, Shabala S (2005). Exogenously supplied compatible solutes rapidly ameliorate NaCl-induced potassium efflux from barley roots. Plant Cell Physiol 46, 1924-1933.
19 de Silva NDG, Cholewa E, Ryser P (2012). Effects of combined drought and heavy metal stresses on xylem structure and hydraulic conductivity in red maple ( Acer rubrum L.). J Exp Bot 63, 5957-5966.
20 Duan BL, Ran F, Zhang XL, Zhang YB, Korpelainen H, Li CY (2011). Long-term acclimation of mesophyll conductance, carbon isotope discrimination and growth in two contrasting Picea asperata populations exposed to drought and enhanced UV-B radiation for three years. Agric Forest Meteor 151, 116-126.
21 Fan J, Hill L, Crooks C, Doerner P, Lamb C (2009). Abscisic acid has a key role in modulating diverse plant- pathogen interactions. Plant Physiol 150, 1750-1761.
22 Figueroa P, Browse J (2012). The Arabidopsis JAZ2 promoter contains a G-box and thymidine-rich module that are necessary and sufficient for jasmonate-dependent activation by MYC transcription factors and repression by JAZ proteins. Plant Cell Physiol 53, 330-343.
23 Gao QM, Venugopal S, Navarre D, Kachroo A (2011). Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiol 155, 464-476.
24 Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99, 15898-15903.
25 Ghandi A, Adi M, Lilia F, Linoy A, Rena G (2016). Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep 6, 19715.
26 Giraud E, Ho LHM, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J (2008). The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol 147, 595-610.
27 Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M (2017). Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 7, 4017.
28 Haghjou MM, Shariati M, Smirnoff N (2009). The effect of acute high light and low temperature stresses on the ascorbate-glutathione cycle and superoxide dismutase activity in two Dunaliella salina strains. Physiol Plant 135, 272-280.
29 Han SH, Park YJ, Park CM (2019). Light primes the thermally induced detoxification of reactive oxygen species during thermotolerance development in Arabidopsis. Plant Cell Physiol 60, 230-241.
30 Hartikainen K, Nerg AM, Kivimäenpää M, Kontunen-Soppela S, Mäenpää M, Oksanen E, Rousi M, Holopainen T (2009). Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Tree Physiol 29, 1163-1173.
31 Hewezi T, Léger M, Gentzbittel L (2008). A comprehensive analysis of the combined effects of high light and high temperature stresses on gene expression in sunflower. Ann Bot 102, 127-140.
32 Hofmann RW, Campbell BD, Fountain DF (2003). Sensitivity of white clover to UV-B radiation depends on water availability, plant productivity and duration of stress. Glob Chang Biol 9, 473-477.
33 Hubbard M, Germida JJ, Vujanovic V (2014). Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116, 109-122.
34 IPCC ( 2014). Summary for policymakers. In: Climate change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. A Contribution of Working Group II to the Fifth Assessment Report of the IPCC. Cambridge and New York: Cam- bridge University Press. pp. 190.
35 Iyer NJ, Tang YH, Mahalingam R (2013). Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ 36, 706-720.
36 Jiang YW, Huang BR (2001). Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci 41, 436-442.
37 Kasurinen A, Biasi C, Holopainen T, Rousi M, Mäenpää M, Oksanen E (2012). Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure. Tree Physiol 32, 737-751.
38 Kazan K, Manners JM (2012). JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17, 22-31.
39 Keleş Y, Öncel I (2002). Response of antioxidative defence system to temperature and water stress combinations in wheat seedlings. Plant Sci 163, 783-790.
40 Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008). Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283, 34197-34203.
41 Kumar D, Datta R, Hazra S, Sultana A, Mukhopadhyay R, Chattopadhyay S (2015). Transcriptomic profiling of Arabidopsis thaliana mutant pad2.1 in response to combined cold and osmotic stress. PLoS One 10, e0122690.
42 Liu JZ, Feng LL, Gu XT, Deng X, Qiu Q, Li Q, Zhang YY, Wang MY, Deng YW, Wang ET, He YK, Bäurle I, Li JM, Cao XF, He ZH (2019). An H3K27me3 demethylase- HSFA2 regulatory loop orchestrates transgenerational thermomemory in Arabidopsis. Cell Res 29, 379-390.
43 Lobell DB, Cassman KG, Field CB (2009). Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Environ Resour 34, 179-204.
44 Löw M, Herbinger K, Nunn AJ, Häberle KH, Leuchner M, Heerdt C, Werner H, Wipfler P, Pretzsch H, Tausz M, Matyssek R (2006). Extraordinary drought of 2003 overrules ozone impact on adult beech trees ( Fagus sylvatica). Trees 20, 539-548.
45 Luck J, Spackman M, Freeman A, Trebicki P, Griffiths W, Finlay K, Chakraborty S (2011). Climate change and diseases of food crops. Plant Pathol 60, 113-121.
46 Lunn JE (2007). Gene families and evolution of trehalose metabolism in plants. Funct Plant Biol 34, 550-563.
47 Madgwick JW, West JS, White RP, Semenov MA, Townsend JA, Turner JA, Fitt BDL (2011). Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur J Plant Pathol 130, 117-131.
48 Mahrookashani A, Siebert S, Hüging H, Ewert F (2017). Independent and combined effects of high temperature and drought stress around anthesis on wheat. J Agron Crop Sci 203, 453-463.
49 Martínez-Ballesta MDC, Bastías E, Carvajal M (2008). Combined effect of boron and salinity on water transport: the role of aquaporins. Plant Signal Behav 3, 844-845.
50 Mittler R, Blumwald E (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61, 443-462.
51 Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Yousfi S, Araus JL, Cairns JE, Fernie AR (2015). Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol 169, 2665-2683.
52 Ottman MJ, Kimball BA, Pinter PJ, Wall GW, Vanderlip RL, Leavitt SW, LaMorte RL, Matthias AD, Brooks TJ (2001). Elevated CO2 increases sorghum biomass under drought conditions. New Phytol 150, 261-273.
53 Pääkkönen E, Vahala J, Pohjola M, Holopainen T, Kärenlampi L (1998). Physiological, stomatal and ultrastructural ozone responses in birch ( Betula pendula Roth.) are modified by water stress. Plant Cell Environ 21, 671-684.
54 Pandey P, Ramegowda V, Senthil-Kumar M (2015). Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6, 723.
55 Parent B, Bonneau J, Maphosa L, Kovalchuk A, Langridge P, Fleury D (2017). Quantifying wheat sensitivities to environmental constraints to dissect genotype × environ- ment interactions in the field. Plant Physiol 174, 1669-1682.
56 Pérez-López U, Miranda-Apodaca J, Muñoz-Rueda A, Mena-Petite A (2013). Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J Plant Physiol 170, 1517-1525.
57 Poulson ME, Boeger MRT, Donahue RA (2006). Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime. Photosynth Res 90, 79-90.
58 Prasad PVV, Pisipati SR, Momčilović I, Ristic Z (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. J Agron Crop Sci 197, 430-441.
59 Prasch CM, Sonnewald U (2013). Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162, 1849-1866.
60 Ramegowda V, Senthil-Kumar M (2015). The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol 176, 47-54.
61 Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013). Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161, 1783-1794.
62 Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia- Sanchez F, Martinez V (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37, 1059-1073.
63 Rizhsky L, Davletova S, Liang HJ, Mittler R (2004). The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279, 11736-11743.
64 Rizhsky L, Liang HJ, Mittler R (2002). The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130, 1143-1151.
65 Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, Von Korff M (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley ( Hordeum vulgare L.). J Exp Bot 64, 3201-3212.
66 Roychoudhury A, Paul S, Basu S (2013). Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32, 985-1006.
67 Sales CRG, Ribeiro RV, Silveira JAG, Machado EC, Martins MO, Lagôa AMMA (2013). Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiol Biochem 73, 326-336.
68 Salvucci ME, Crafts-Brandner SJ (2004). Relationship bet- ween the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134, 1460-1470.
69 Sangtarash MH, Qaderi MM, Chinnappa CC, Reid DM (2009). Differential sensitivity of canola ( Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. Environ Exp Bot 66, 212-219.
70 Schenke D, Böettcher C, Scheel D (2011). Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signaling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ 34, 1849-1864.
71 Srivastava G, Kumar S, Dubey G, Mishra V, Prasad SM (2012). Nickel and ultraviolet-B stresses induce differential growth and photosynthetic responses in Pisum sativum L. seedlings. Biol Trace Elem Res 149, 86-96.
72 Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014). Abiotic and biotic stress combinations. New Phytol 203, 32-43.
73 Turtola S, Rousi M, Pusenius J, Yamaji K, Heiska S, Tirkkonen V, Meier B, Julkunen-Tiitto R (2006). Genotypic variation in drought response of willows grown under ambient and enhanced UV-B radiation. Environ Exp Bot 56, 80-86.
74 Van Ittersum MK, Cassman KG, Grassini P, Wolf J, Tittonell P, Hochman Z (2013). Yield gap analysis with local to global relevance—a review. Field Crops Res 143, 4-17.
75 Vile D, Pervent M, Belluau M, Vasseur F, Bresson J, Muller B, Granier C, Simonneau T (2012). Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects? Plant Cell Environ 35, 702-718.
76 Waller F (2005). The endophytic fungus Pirifomospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 38, 13386-13391.
77 Walter MH (1989). The induction of phenylpropanoid biosynthetic enzymes by ultraviolet light or fungal elicitor in cultured parsley cells is overriden by a heat-shock treatment. Planta 177, 1-8.
78 Way DA, Oren R (2010). Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30, 669-688.
79 Welfare K, Yeo AR, Flowers TJ (2002). Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea ( Cicer arietinum L.) varieties. Environ Pollut 120, 397-403.
80 Wen XG, Qiu NW, Lu QT, Lu CM (2005). Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220, 486-497.
81 Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, Mittler R (2016a). ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. J Exp Bot 67, 5381-5390.
82 Zandalinas SI, Rivero RM, Martínez V, Gómez-Cadenas A, Arbona V (2016b). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16, 105.
83 Zandalinas SI, Sales C, Beltrán J, Gómez-Cadenas A, Arbona V (2017). Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Front Plant Sci 7, 1954.
84 Zhang HN, Sonnewald U (2017). Differences and commonalities of plant responses to single and combined stresses. Plant J 90, 839-855.
85 Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GTS, Asard H (2014). Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. Glob Chang Biol 20, 3670-3685.
[1] 刘杰, 严建兵. 大刍草稀有等位基因促进玉米密植高产[J]. 植物学报, 2019, 54(5): 554-557.
[2] 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553.
[3] 胡伟娟, 傅向东, 陈凡, 杨维才. 新一代植物表型组学的发展之路[J]. 植物学报, 2019, 54(5): 558-568.
[4] 甄晓溪, 刘浩然, 李鑫, 徐凡, 张文忠. 异源过表达OsATG8b基因提高转基因拟南芥的 氮/碳胁迫耐受性和产量[J]. 植物学报, 2019, 54(1): 23-36.
[5] 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628.
[6] 马爱民, 漆小泉. 利用多组学手段解析番茄育种过程中代谢物变化的机制[J]. 植物学报, 2018, 53(5): 578-580.
[7] 艾文琴, 姜瀚原, 李欣欣, 廖红. 一种高效研究大豆根瘤共生固氮的营养液栽培体系[J]. 植物学报, 2018, 53(4): 519-527.
[8] 王玉才, 张恒嘉, 邓浩亮, 王世杰, 巴玉春. 调亏灌溉对菘蓝水分利用及产量的影响[J]. 植物学报, 2018, 53(3): 322-333.
[9] 韩丹璐, 赖建彬, 阳成伟. SUMO E3连接酶在植物生长发育中的功能研究进展[J]. 植物学报, 2018, 53(2): 175-184.
[10] 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172.
[11] 刘洋, 张静, 王秋玲, 侯岁稳. 植物细胞自噬研究进展[J]. 植物学报, 2018, 53(1): 5-16.
[12] 舒江平, 刘莉, 沈慧, 戴锡玲, 王全喜, 严岳鸿. 基于系统基因组学分析揭示早期陆生植物的复杂网状进化关系[J]. 生物多样性, 2017, 25(6): 675-682.
[13] 张晓丽, 李萍, 周彩云, 陈明霞, 赵喜亭, 李明军. 怀地黄脱毒种苗大田生长性状及产量品质[J]. 植物学报, 2017, 52(4): 474-479.
[14] 邱丽丽, 赵琪, 张玉红, 戴绍军. 植物质膜蛋白质组的逆境应答研究进展[J]. 植物学报, 2017, 52(2): 128-147.
[15] 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 关萍 石建明 李淑久. 绞股兰下胚轴愈伤组织发生与器官再生的组织学观察[J]. 植物学报, 1994, 11(专辑): 19 .
[2] 肖啸 程振起. 叶绿体4.5 SrRNA II. 基因与起源[J]. 植物学报, 1985, 3(06): 7 -9 .
[3] 曹翠玲李生秀. 供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响[J]. 植物学报, 2003, 20(03): 319 -324 .
[4] 宋莉英 谭诤 高峰 邓暑燕. 我国葫芦科植物离体培养研究进展[J]. 植物学报, 2004, 21(03): 360 -366 .
[5] 石建明 桂耀林 朱至清. 甜菜叶柄脱分化过程中无丝分裂现象的观察[J]. 植物学报, 1989, 6(03): 155 .
[6] 李俊德 杨健 王宇飞. 山东山旺中新世的水生植物[J]. 植物学报, 2000, 17(专辑): 261 .
[7] 徐景先 王宇飞 杨健 普光荣 张翠芬. 云南第三纪植物群及其古气候的研究进展[J]. 植物学报, 2000, 17(专辑): 84 -94 .
[8] 孙震晓 夏光敏 陈惠民. 新麦草的核型分析[J]. 植物学报, 1995, 12(01): 56 .
[9] 王立军 谷安根 张友民 贾伟平. 南瓜幼苗初生维管系统的解剖学研究[J]. 植物学报, 1994, 11(专辑): 8 -9 .
[10] 郑云普;赵建成*;张丙昌;李琳;张元明. 荒漠生物结皮中藻类和苔藓植物研究进展[J]. 植物学报, 2009, 44(03): 371 -378 .