Chinese Bulletin of Botany ›› 2020, Vol. 55 ›› Issue (4): 421-429.DOI: 10.11983/CBB19244
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Nan Zhang1,Ziguang Liu2,Shichen Sun3,Shengyi Liu4,Jianhui Lin1,Yifang Peng5,Xiaoxu Zhang1,He Yang1,Xi Cen1,Juan Wu1,*()
Received:
2019-12-18
Accepted:
2020-04-15
Online:
2020-07-01
Published:
2020-05-21
Contact:
Juan Wu
Nan Zhang,Ziguang Liu,Shichen Sun,Shengyi Liu,Jianhui Lin,Yifang Peng,Xiaoxu Zhang,He Yang,Xi Cen,Juan Wu. Response of AtR8 lncRNA to Salt Stress and Its Regulation on Seed Germination in Arabidopsis[J]. Chinese Bulletin of Botany, 2020, 55(4): 421-429.
Figure 1 Analysis of AtR8 lncRNA expression during seed germination in Arabidopsis thaliana (A) Northern blotting analysis of AtR8 lncRNA expression during seed germination (expression of 5.8S rRNA serves as loading controls); (B) In situ hybridization of AtR8 lncRNA expression during seed germination (arrow indicates AtR8 lncRNA signal) (Bars=200 μm).
Figure 2 AtR8 lncRNA expression during seed germination of Arabidopsis thaliana after NaCl treatment (A) Sequence comparison between AtR8 lncRNA and UCC salt stress-responsive element (the USE and TATA promoter sequences are capitalized, bloded and framed; the AtR8 lncRNA transcriptional region is capitalized and bolded; and the conserved salt stress-responsive element is marked with asterisk). (B) The location of the salt stress-responsive element in the secondary structure of AtR8 lncRNA predicted by RNAlogo (the salt stress-responsive motif is capitalized, bloded and indicated with an arrow). (C) Northern blotting analysis of AtR8 lncRNA expression in germinating seeds under different NaCl treatments, 5.8S rRNA was used as a loading control. The lower panel shows semi-quantitative analysis of the Northern blotting signals. Two independent experiments gave similar results, and a representative example is shown. Values are means ± SE (t-test, *P<0.05, **P<0.01). (D) Northern blotting analysis of AtR8 lncRNA in germinating seeds under different periods of 150 mmol·L-1 NaCl treatment, 5.8S rRNA was used as a loading control. The lower panel shows semi-quantitative analysis of the Northern blotting signals. Two independent experiments gave similar results, and a representative example is shown. Values are means ± SE (t-test, **P<0.01).
Figure 3 Loss of AtR8 lncRNA inhibits Arabidopsis thaliana seed germination under salt stress (A) Northern blotting analysis of the AtR8 lncRNA loss-of-function mutant atr8 (5.8S rRNA was used as the loading control); (B) Statistical analysis of growth and germination rate of the wild-type and atr8 seeds under different concentrations of NaCl (data are average of three independent experiments, and bars indicate standard error); (C) Fresh and dry weight of the wild-type and atr8 seeds after 7 d of germination under NaCl treatment (the values are average of three independent experiments, and bars indicate standard error (the asterisk indicate significant differences between atr8 and wild type (t-test, * P < 0.05, ** P < 0.01)). WT: Wild type
[1] | 陈洁, 林栖凤 (2003). 植物耐盐生理及耐盐机理研究进展. 海南大学学报(自然科学版) 21(2), 177-182. |
[2] | 窦伟 (2010). 硫化氢对盐和铝胁迫下小麦种子萌发及氧化损伤的缓解效应. 硕士论文. 合肥: 合肥工业大学. pp. 28. |
[3] | 韩志平, 张海霞, 周凤 (2015). 盐胁迫对植物的影响及植物对盐胁迫的适应性. 山西大同大学学报(自然科学版) 31(3), 59-62. |
[4] | 郝雪峰, 高惠仙, 燕平梅, 李晓春, 李珊珊 (2013). 盐胁迫对大豆种子萌发及生理的影响. 湖北农业科学 52, 1263-1266. |
[5] | 黄小庆, 李丹丹, 吴娟 (2015). 植物长链非编码RNA研究进展. 遗传 37, 344-359. |
[6] | 刘春晓, 黄小庆, 刘自广, 彭疑芳, 李丹丹, 张晓旭, 李爽, 汤川泰, 吴娟 (2019). 十字花科植物种子低分子RNA提取方法比较. 基因组学与应用生物学 38, 1236-1241. |
[7] | 陆玉建, 高春明, 郑香峰, 钮松召 (2012). 盐胁迫对拟南芥种子萌发的影响. 湖北农业科学 51, 5099-5104. |
[8] | 乔慧萍, 李建设, 雍立华, 艾凤舞 (2007). 植物盐胁迫生理及其适应性调控机制的研究进展. 宁夏农林科技 (3), 34-36, 24. |
[9] | 苏永全, 吕迎春 (2007). 盐分胁迫对植物的影响研究简述. 甘肃农业科技 (3), 23-27. |
[10] | 孙兰菊, 岳国峰, 王金霞, 周百成 (2001). 植物耐盐机制的研究进展. 海洋科学 25(4), 28-31. |
[11] | 王泳超 (2016). γ-氨基丁酸(GABA)调控盐胁迫下玉米种子萌发和幼苗生长的机制. 博士论文. 哈尔滨: 东北农业大学. pp. 73. |
[12] | 张新宇, 赵兰杰, 李艳军, 孙杰, 刘永昌 (2014). 盐胁迫对拟南芥AtPUB18基因的诱导表达及其启动子分析. 西北植物学报 34, 54-59. |
[13] |
Bergler J, Hoth S (2011). Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis. Plant Biol 13, 725-730.
DOI URL PMID |
[14] |
Di C, Yuan JP, Wu Y, Li JR, Lin HX, Hu L, Zhang T, Qi YJ, Gerstein MB, Guo Y, Lu ZJ (2014). Characterization of stress-responsive lncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and structural features. Plant J 80, 848-861.
DOI URL PMID |
[15] |
Ding JH, Lu Q, Ouyang YD, Mao HL, Zhang PB, Yao JL, Xu CG, Li XH, Xiao JH, Zhang QF (2012). A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109, 2654-2659.
DOI URL PMID |
[16] |
Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ (2014). WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J 79, 810-823.
URL PMID |
[17] |
Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J (2007). Target mimicry provides a new me- chanism for regulation of microRNA activity. Nat Genet 39, 1033-1037.
DOI URL PMID |
[18] |
Guo GH, Liu XY, Sun FL, Cao J, Huo N, Wuda B, Xin MM, Hu ZR, Du JK, Xia R, Rossi V, Peng HR, Ni ZF, Sun QX, Yao YY (2018). Wheat miR9678 affects seed germination by generating phased siRNAs and modulating abscisic acid/gibberellin signaling. Plant Cell 30, 796-814.
DOI URL PMID |
[19] |
Heo JB, Sung S (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76-79.
URL PMID |
[20] |
Huang Y, Feng CZ, Ye Q, Wu WH, Chen YF (2016). Arabidopsis WRKY6 transcription factor acts as a positive regulator of abscisic acid signaling during seed germination and early seedling development. PLoS Genet 12, e1005833.
DOI URL PMID |
[21] |
Jiang WB, Yu DQ (2009). Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biol 9, 96.
URL PMID |
[22] |
Kim DH, Sung S (2012). Environmentally coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. Curr Opin Plant Biol 15, 51-56.
DOI URL PMID |
[23] | Li DD, Huang XQ, Liu ZG, Li S, Okada T, Yukawa Y, Wu J (2016). Effect of AtR8 lncRNA partial deletion on Arabidopsis seed germination. Mol Soil Biol 7, 1-7. |
[24] |
Liu F, Xu YR, Chang KX, Li SN, Liu ZG, Qi SD, Jia JB, Zhang M, Crawford NM, Wang Y (2019). The long noncoding RNA T5120 regulates nitrate response and assimilation in Arabidopsis. New Phytol 224, 117-131.
DOI URL PMID |
[25] | Martin R, Liu PP, Nonogaki H (2005). Simple purification of small RNAs from seeds and efficient detection of multiple microRNAs expressed in Arabidopsis thaliana and tomato(Lycopersicon esculentum) seeds. Seed Sci Res 15, 319-328. |
[26] | Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, Arun Kumar MB, Pupel P, Nonogaki H (2010a). The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13 in Arabidopsis. Seed Sci Res 20, 89-96. |
[27] | Martin RC, Asahina M, Liu PP, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, Arun Kumar MB, Pupel P, Nonogaki H (2010b). The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Sci Res 20, 79-87. |
[28] |
Qin T, Zhao HY, Cui P, Albesher N, Xiong LM (2017). A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance. Plant Physiol 175, 1321-1336.
DOI URL PMID |
[29] |
Reyes JL, Chua NH (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49, 592-606.
DOI URL PMID |
[30] |
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002). Prediction of plant microRNA targets. Cell 110, 513-520.
DOI URL PMID |
[31] |
Shkolnik D, Finkler A, Pasmanik-Chor M, Fromm H (2019). CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 6: a key regulator of Na+ homeostasis during germination. Plant Physiol 180, 1101-1118.
DOI URL PMID |
[32] |
Swiezewski S, Liu FQ, Magusin A, Dean C (2009). Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462, 799-802.
DOI URL PMID |
[33] |
Wang AH, Hu JH, Gao CB, Chen GL, Wang BC, Lin CF, Song LP, Ding Y, Zhou GL (2019). Genome-wide analysis of long non-coding RNAs unveils the regulatory roles in the heat tolerance of Chinese cabbage (Brassica rapa ssp. chinensis). Sci Rep 9, 5002.
DOI URL PMID |
[34] |
Wu J, Liu CX, Liu ZG, Li S, Li DD, Liu SY, Huang XQ, Liu SK, Yukawa Y (2019a). Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis. Plant Cell Physiol 60, 421-435.
DOI URL PMID |
[35] |
Wu J, Okada T, Fukushima T, Tsudzuki T, Sugiura M, Yukawa Y (2012). A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis. RNA Biol 9, 302-313.
DOI URL |
[36] |
Wu XX, Shi T, Iqbal S, Zhang Y, Liu L, Gao ZH (2019b). Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume. BMC Plant Biol 19, 64.
DOI URL PMID |
[37] |
Xu W, Yang TQ, Wang B, Han B, Zhou HK, Wang Y, Li DZ, Liu AZ (2018). Differential expression networks and inheritance patterns of long non-coding RNAs in castor bean seeds. Plant J 95, 324-340.
DOI URL PMID |
[38] |
Yang BC, Song ZH, Li CN, Jiang JH, Zhou YY, Wang RP, Wang Q, Ni C, Liang Q, Chen HD, Fan LM (2018). RSM1, an Arabidopsis MYB protein, interacts with HY5/ HYH to modulate seed germination and seedling development in response to abscisic acid and salinity. PLoS Genet 14, e1007839.
DOI URL |
[39] |
Yao WJ, Zhao K, Cheng ZH, Li XY, Zhou BR, Jiang TB (2018). Transcriptome analysis of poplar under salt stress and over-expression of transcription factor NAC57 gene confers salt tolerance in transgenic Arabidopsis. Front Plant Sci 9, 1121.
DOI URL PMID |
[40] |
Yin DD, Li SS, Shu QY, Gu ZY, Wu Q, Feng CY, Xu WZ, Wang LS (2018). Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds. Gene 666, 72-82.
DOI URL PMID |
[41] |
Zhang GY, Chen DG, Zhang T, Duan AG, Zhang JG, He CY (2018). Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Res 25, 465-476.
URL PMID |
[42] |
Zhang XP, Dong J, Deng FN, Wang W, Cheng YY, Song LR, Hu MJ, Shen J, Xu QJ, Shen FF (2019). The long non-coding RNA lncRNA 973 is involved in cotton response to salt stress. BMC Plant Biol 19, 459.
DOI URL PMID |
[43] |
Zhao XY, Li JR, Lian B, Gu HQ, Li Y, Qi YJ (2018). Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun 9, 5056.
DOI URL PMID |
[44] | Zhu M, Zhang M, Xing LJ, Li WZ, Jiang HY, Wang L, Xu MY (2017). Transcriptomic analysis of long non-coding RNAs and coding genes uncovers a complex regulatory network that is involved in maize seed development. Genes (Basel) 8, 274. |
[1] | Wen-bo Li Long Sun Hu Lou Cheng Yu Yu Han Tong-xin HU. Effects of fire disturbance on seed germination of Larix gmelinii [J]. Chin J Plant Ecol, 2024, 48(6): 0-0. |
[2] | . Difference of seed germination characteristics and dormancy release method of Schoenoplectiella mucronata [J]. Chin J Plant Ecol, 2024, 48(5): 638-650. |
[3] | Jixuan Yang, Xuefei Wang, Hongya Gu. Genetic Basis of Flowering Time Variations in Tibetan Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2024, 59(3): 373-382. |
[4] | Xiaobo Zhu, Zhang Dong, Mengjin Zhu, Jin Hu, Cheng Lin, Min Chen, Yajing Guan. Indispensable Material for Germination: Long-lived mRNAs of Plant Seed [J]. Chinese Bulletin of Botany, 2024, 59(3): 355-372. |
[5] | Jinyu Du, Zhen Sun, Yanlong Su, Heping Wang, Yaling Liu, Zhenying Wu, Feng He, Yan Zhao, Chunxiang Fu. Identification and Functional Analysis of an Agropyron mongolicum Caffeic Acid 3-O-methyltransferase Gene AmCOMT1 [J]. Chinese Bulletin of Botany, 2024, 59(3): 383-396. |
[6] | Yanxiao Chen, Yaping Li, Jinjun Zhou, Lixia Xie, Yongbin Peng, Wei Sun, Yanan He, onghui Jiang, Zenglan Wang, Chongke Zheng, Xianzhi Xie. Effect of Amino Acid Point Mutations on the Structure and Function of Phytochrome B in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2024, 59(3): 481-494. |
[7] | Cai Shuyu, Liu Jianxin, Wang Guofu, Wu Liyuan, Song Jiangping. Regulatory Mechanism of Melatonin on Tomato Seed Germination Under Cd2+ Stress [J]. Chinese Bulletin of Botany, 2023, 58(5): 720-732. |
[8] | Gang Wang, Ertao Wang. The Broad-spectrum Innate Resistance Against Clubroot Disease Conferred by WeiTsing is Mechanistically Revealed [J]. Chinese Bulletin of Botany, 2023, 58(3): 356-358. |
[9] | Feifei Wang, Zhenxiang Zhou, Yi Hong, Yangyang Gu, Chao Lü, Baojian Guo, Juan Zhu, Rugen Xu. Identification of the NF-YC Genes in Hordeum vulgare and Expression Analysis Under Salt Stress [J]. Chinese Bulletin of Botany, 2023, 58(1): 140-149. |
[10] | Qi Zhang, Wenjing Zhang, Xiankai Yuan, Ming Li, Qiang Zhao, Yanli Du, Jidao Du. The Regulatory Mechanism of Melatonin on Nucleic Acid Repairing of Common Bean (Phaseolus vulgaris) at the Sprout Stage Under Salt Stress [J]. Chinese Bulletin of Botany, 2023, 58(1): 108-121. |
[11] | Yang Yongqing, Guo Yan. Analysis of the pH Sensing Mechanism of Plant Apoplasts [J]. Chinese Bulletin of Botany, 2022, 57(4): 409-411. |
[12] | Tiantian Zhi, Zhou Zhou, Chengyun Han, Chunmei Ren. PAD4 Mutation Accelerating Programmed Cell Death in Arabidopsis thaliana Tyrosine Degradation Deficient Mutant sscd1 [J]. Chinese Bulletin of Botany, 2022, 57(3): 288-298. |
[13] | Yanyan Li, Yanhua Qi. Advances in Biological Functions of Aux/IAA Gene Family in Plants [J]. Chinese Bulletin of Botany, 2022, 57(1): 30-41. |
[14] | Yongmei Che, Yanjun Sun, Songchong Lu, Lixia Hou, Xinxin Fan, Xin Liu. AtMYB77 Involves in Lateral Root Development via Regulating Nitric Oxide Biosynthesis under Drought Stress in Arabidopsis thaliana [J]. Chinese Bulletin of Botany, 2021, 56(4): 404-413. |
[15] | Ting Wang, Huanhuan Yang, Hongwei Zhao, Josef Voglmeir, Li Liu. Changes of Protein N-glycosylation in the Growth of Arabidopsis thaliana and Effects of Enzymatic Deglycosylation on Root Development [J]. Chinese Bulletin of Botany, 2021, 56(3): 262-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||