陈晓 (2002). 黄金树及其在北京的园林应用价值. 北京园林 18, 24–25.
陈旭辉, 江莎, 古松, 许珂, 王永周, 丁锐, 黄俊哲(2009). 黄金树花器官发生及发育的形态观察. 园艺学报, 36 (2), 285–290.
李利平, 刘海燕, 陈发菊(2013). 黄金树大、小孢子发生及雌、雄配子体发育的细胞学观察. 植物研究, 33 (2), 145–148.
Bowman JL (1997). Evolutionary conservation of angiosperm flower development at the molecular and genetic levels. J Biosci, 22, 515–527.
Chen MK, Hsieh WP, Yang CH (2012). Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA(PI) orthologues, J. Exp. Bot. 63, 941–961.
Endress PK. (2011). Evolutionary diversification of the flowers in angiosperms. Am J Bot, 98(3), 370–396.
Hernández-Hernández T, Martínez-Castilla LP, Alvarez-Buylla ER (2007), Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events, Mol. Biol. Evol. 24, 465–481.
Goto K, Meyerowitz EM (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548–1560.
Jack T, Brockman LL, Meyerowitz EM. (1992).The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 68, 683–697.
Jones DT, Taylor WR, Thornton JM (1992). The rapid generation of mutation data matrices from protein sequences, Comput. Appl. Biosci. 8, 275–282.
Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication, Am. J. Bot. 91, 2102–2118.
Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005). Expression of floral MADS-box genes in basal angiosperms: implications on evolution of floral regulators and the perianth. The Plant J., 43, 724–744.
Kramer EM, Dorit RL, Irish VF (1998). Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages, Genetics 149, 765–783.
Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT method. Methods, 25, 402–408.
Riechmann JL, Krizek BA, Meyerowitz E M (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci USA, 93, 4793–4798.
Soltis DE, Chanderbali AS, Kim S, Buzgo M, Soltis PS (2007).The ABC Model and its Applicability to Basal Angiosperms. Ann Bot, 100, 155–163
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000). A short history of MADS-box genes in plants, Plant Mol. Biol. 42 ,115–149.
Thompson JD, Higgins DG, Gibson TJ (1994). CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res, 22 (22), 4673–4680.
Theissen G, Saedler H (2001). Floral quartets. Nature, 409, 469–471.
Kramer EM, Di Stilio VS, Schluter PM (2003). Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Intl J Plant Sci., 164, 1–11.
Jing D, Liu Z, Zhang B, Ma J, Han Y, Chen F (2014). Two ancestral APETALA3 homologs from the basal angiosperm Magnolia wufengensis (Magnoliaceae) can affect flower development of Arabidopsis, Gene 537, 100–107.
Jing D, Xia Y, Chen F, Wang Z, Zhang S, Wang J (2015). Ectopic expression of a Catalpa bungei (Bignoniaceae) PISTILLATA homologue rescues the petal and stamen identities in Arabidopsis pi-1 mutant, Plant Science 231, 40–51.
Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K (2009). Pistillata-duplications as a mode for floral diversification in (Basal) asterids. Mol Biol Evol. 26, 2627-2645. |