植物学报 ›› 2023, Vol. 58 ›› Issue (2): 233-240.DOI: 10.11983/CBB22280
所属专题: 饲草生物学专辑 (2023年58卷2期、2022年57卷6期)
收稿日期:
2022-12-16
接受日期:
2023-04-18
出版日期:
2023-03-01
发布日期:
2023-04-18
通讯作者:
*E-mail: 基金资助:
Xian Deng(), Tong Li, Xiaofeng Cao(
)
Received:
2022-12-16
Accepted:
2023-04-18
Online:
2023-03-01
Published:
2023-04-18
Contact:
*E-mail: 摘要: 基因编辑技术可对生物体的遗传物质进行精准修饰和定向改造, 是当前生命科学领域最受瞩目的颠覆性技术之一, 也是农牧业生物育种中的关键核心技术。近年来, 随着我国对高产优质饲草的需求量持续增加, 亟须培育具有自主知识产权的优质饲草品种。该文简要概述了基因编辑技术的发展及其在农业育种中的应用, 总结了禾本科和豆科饲草的基因组编辑研究进展, 展望了未来利用基因组编辑开展饲草分子设计育种的发展方向。
邓娴, 李彤, 曹晓风. 基因编辑在饲草育种中的应用与展望. 植物学报, 2023, 58(2): 233-240.
Xian Deng, Tong Li, Xiaofeng Cao. Application and Prospect of Gene Editing in Forage Grass Breeding. Chinese Bulletin of Botany, 2023, 58(2): 233-240.
物种 | 靶基因 | 针对性状/表型 | 参考文献 |
---|---|---|---|
燕麦 | ACCase | 抗除草剂 | 于东洋等, |
黑麦草 | DMC1 | 雄性不育 | Zhang et al., |
蒙古冰草 | Sh1 | 落粒性状 | 张文静等, |
海大麦 | SOS1 | 耐盐性状 | Kuang et al., |
紫花苜蓿 | SPL8 | 多分枝、再生强、生物量大、抗旱 | Singer et al., |
PALM1 | 多叶型 | Chen et al., | |
NP1 | 隐性核不育 | Ye et al., | |
GA3ox1 | 矮化、匍匐、高叶茎比、高蛋白含量 | Zheng et al., | |
SGR | 叶片衰老 | Wolabu et al., | |
百脉根 | SYMRK/Lb1/Lb2/Lb3 | 共生固氮相关 | Wang et al., |
表1 CRISPR-Cas9技术在饲草中的应用
Table 1 Application of CRISPR/Cas9 technology in forage crops
物种 | 靶基因 | 针对性状/表型 | 参考文献 |
---|---|---|---|
燕麦 | ACCase | 抗除草剂 | 于东洋等, |
黑麦草 | DMC1 | 雄性不育 | Zhang et al., |
蒙古冰草 | Sh1 | 落粒性状 | 张文静等, |
海大麦 | SOS1 | 耐盐性状 | Kuang et al., |
紫花苜蓿 | SPL8 | 多分枝、再生强、生物量大、抗旱 | Singer et al., |
PALM1 | 多叶型 | Chen et al., | |
NP1 | 隐性核不育 | Ye et al., | |
GA3ox1 | 矮化、匍匐、高叶茎比、高蛋白含量 | Zheng et al., | |
SGR | 叶片衰老 | Wolabu et al., | |
百脉根 | SYMRK/Lb1/Lb2/Lb3 | 共生固氮相关 | Wang et al., |
[1] | 程星, 包爱科, 冯波, 王锁民 (2009). 百脉根基因工程研究进展. 生物技术通报 (4), 1-6, 28. |
[2] | 姜倩倩, 陈磊, 李正男, 尹启琳, 张立培, 赵吉强, 宋建成 (2021). 多年生黑麦草原生质体制备及瞬时表达体系的建立. 分子植物育种 19, 2941-2948. |
[3] | 麻冬梅, 郭林娜, 金凤霞, 李会文, 许兴 (2014). 多年生黑麦草多基因遗传转化体系的建立与优化. 中国草地学报 36, 13-17. |
[4] | 于东洋, 王凤梧, 融晓萍, 武志娟, 王鑫, 杨燕, 韩冰, 田青松 (2019). 利用CRISPR/Cas9技术对燕麦乙酰辅酶A羧化酶(ACCase)基因的编辑. 分子植物育种 17, 6356-6362. |
[5] | 张文静, 融晓萍, 田青松, 李婷婷, 武志娟, 刘慧艳, 韩冰 (2019). 利用CRISPR/Cas9技术对蒙古冰草落粒相关基因Sh1的编辑. 分子植物育种 17, 5021-5025. |
[6] |
Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
DOI |
[7] |
Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug II RG, Tan WF, Penheiter SG, Ma AC, Leung AYH, Fahrenkrug SC, Carlson DF, Voytas DF, Clark KJ, Essner JJ, Ekker SC (2012). In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114-118.
DOI |
[8] |
Chen HT, Zeng Y, Yang YZ, Huang LL, Tang BL, Zhang H, Hao F, Liu W, Li YH, Liu YB, Zhang XS, Zhang R, Zhang YS, Li YX, Wang K, He H, Wang ZK, Fan GY, Yang H, Bao AK, Shang ZH, Chen JH, Wang W, Qiu Q (2020). Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11, 2494.
DOI PMID |
[9] |
Chen KL, Wang YP, Zhang R, Zhang HW, Gao CX (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70, 667-697.
DOI PMID |
[10] |
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
DOI PMID |
[11] |
Gaj T, Gersbach CA, Barbas CF (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405.
DOI PMID |
[12] |
Gao CX (2021). Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
DOI PMID |
[13] | Gao RM, Feyissa BA, Croft M, Hannoufa A (2018). Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa. Planta 247, 1043-1050. |
[14] |
Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464-471.
DOI URL |
[15] |
Hirosue T, Yamasue Y, Yabuno T (2000). Shattering habit and dormancy of spikelets in a cultivated form of Echinochloa oryzicola recently found in China. Weed Res 40, 449-456.
DOI URL |
[16] |
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433.
DOI PMID |
[17] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
DOI PMID |
[18] |
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
DOI |
[19] |
Kuang LH, Shen QF, Chen LY, Ye LZ, Yan T, Chen ZH, Waugh R, Li Q, Huang L, Cai SG, Fu LB, Xing PW, Wang K, Shao JR, Wu FB, Jiang LX, Wu DZ, Zhang GP (2022). The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies. Plant Commun 3, 100333.
DOI URL |
[20] |
Li SN, Lin DX, Zhang YW, Deng M, Chen YX, Lv B, Li BS, Lei Y, Wang YP, Zhao L, Liang YT, Liu JX, Chen KL, Liu ZY, Xiao J, Qiu JL, Gao CX (2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
DOI |
[21] |
Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C (2018). Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36, 1160-1163.
DOI |
[22] |
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826.
DOI PMID |
[23] |
Nakamura M, Gao YC, Dominguez AA, Qi LS (2021). CRISPR technologies for precise epigenome editing. Nat Cell Biol 23, 11-22.
DOI PMID |
[24] |
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183.
DOI PMID |
[25] |
Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK, Kumar A, Singh D (2016). CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnol Lett 38, 1991-2006.
DOI URL |
[26] |
Shen C, Du HL, Chen Z, Lu HW, Zhu FG, Chen H, Meng XZ, Liu QW, Liu P, Zheng LH, Li XX, Dong JL, Liang CZ, Wang T (2020). The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant 13, 1250-1261.
DOI PMID |
[27] |
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng XD, Choi VM, Rock JM, Wu YY, Katibah GE, Gao ZF, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009). Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459, 437-441.
DOI |
[28] |
Singer SD, Burton Hughes K, Subedi U, Dhariwal GK, Kader K, Acharya S, Chen GQ, Hannoufa A (2021). The CRISPR/Cas9-mediated modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in alfalfa leads to distinct phenotypic outcomes. Front Plant Sci 12, 774146.
DOI URL |
[29] |
Song XG, Meng XB, Guo HY, Cheng Q, Jing YH, Chen MJ, Liu GF, Wang B, Wang YH, Li JY, Yu H (2022). Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size. Nat Biotechnol 40, 1403-1411.
DOI PMID |
[30] |
Symington LS, Gautier J (2011). Double-strand break end resection and repair pathway choice. Annu Rev Genet 45, 247-271.
DOI PMID |
[31] | Wang LX, Wang LL, Tan Q, Fan QL, Zhu H, Hong ZL, Zhang ZM, Duanmu D (2016). Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus japonicus using CRISPR-Cas9. Front Plant Sci 7, 1333. |
[32] |
Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32, 947-951.
DOI PMID |
[33] |
Wolabu TW, Cong LL, Park JJ, Bao QY, Chen M, Sun J, Xu B, Ge YX, Chai MF, Liu ZP, Wang ZY (2020). Development of a highly efficient multiplex genome editing system in outcrossing tetraploid alfalfa (Medicago sativa). Front Plant Sci 11, 1063.
DOI URL |
[34] |
Xie KB, Minkenberg B, Yang YN (2015). Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570-3575.
DOI URL |
[35] |
Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.
DOI URL |
[36] |
Ye QY, Meng XZ, Chen H, Wu JL, Zheng LH, Shen C, Guo D, Zhao YF, Liu JL, Xue Q, Dong JL, Wang T (2022). Construction of genic male sterility system by CRISPR/ Cas9 editing from model legume to alfalfa. Plant Biotechnol J 20, 613-615.
DOI URL |
[37] |
Yu H, Lin T, Meng XB, Du HL, Zhang JK, Liu GF, Chen MJ, Jing YH, Kou LQ, Li XX, Gao Q, Liang Y, Liu XD, Fan ZL, Liang YT, Cheng ZK, Chen MS, Tian ZX, Wang YH, Chu CC, Zuo JR, Wan JM, Qian Q, Han B, Zuccolo A, Wing RA, Cao CX, Liang CZ, Li JY (2021). A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
DOI URL |
[38] |
Zeng DC, Liu TL, Ma XL, Wang B, Zheng ZY, Zhang YL, Xie XR, Yang BW, Zhao Z, Zhu QL, Liu YG (2020). Quantitative regulation of Waxy expression by CRISPR/ Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice. Plant Biotechnol J 18, 2385-2387.
DOI URL |
[39] |
Zhang YW, Ran YD, Nagy I, Lenk I, Qiu JL, Asp T, Jensen CS, Gao CX (2020). Targeted mutagenesis in ryegrass (Lolium spp.) using the CRISPR/Cas9 system. Plant Biotechnol J 18, 1854-1856.
DOI URL |
[40] |
Zheng LH, Wen JQ, Liu JL, Meng XZ, Liu P, Cao N, Dong JL, Wang T (2022). From model to alfalfa: gene editing to obtain semidwarf and prostrate growth habits. Crop J 10, 932-941.
DOI |
[41] | Zhu HC, Li C, Gao CX (2020). Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21, 661-677. |
[1] | 周文期, 周玉乾, 李永生, 何海军, 杨彦忠, 王晓娟, 连晓荣, 刘忠祥, 胡筑兵. 玉米ZmICE2基因调控气孔发育[J]. 植物学报, 2023, 58(6): 866-881. |
[2] | 林克剑, 刘志鹏, 罗栋, 武自念. 饲草种质资源研究现状、存在问题与发展建议[J]. 植物学报, 2023, 58(2): 241-247. |
[3] | 邱锐, 何峰, 李瑞, 王亚梅, 邢思年, 曹英萍, 刘叶飞, 周昕越, 赵彦, 付春祥. 柳枝稷木质素基因F5H的高效编辑[J]. 植物学报, 2023, 58(2): 298-307. |
[4] | 孔照胜, 杨文强, 王柏臣, 林荣呈. 豆科饲草碳氮高效固定、转运和同化利用研究进展[J]. 植物学报, 2022, 57(6): 764-773. |
[5] | 金京波, 梁承志. 饲草基因组学研究进展[J]. 植物学报, 2022, 57(6): 732-741. |
[6] | 王甜甜, 曹丽雯, 刘智全, 杨庆山, 陈良, 陈敏, 景海春. 黄河三角洲滨海草带建设的饲草基础生物学问题[J]. 植物学报, 2022, 57(6): 837-847. |
[7] | 景海春, 王台, 林荣呈, 曹晓风, 种康. 加强饲草基础生物学研究,保障饲草种业与国家大粮食安全[J]. 植物学报, 2022, 57(6): 719-724. |
[8] | 王娜, 姜腾, 王彬锡, 牛丽芳, 林浩. 单倍体育种技术研究进展及其在苜蓿等豆科牧草中的应用[J]. 植物学报, 2022, 57(6): 756-763. |
[9] | 曹丽雯, 卢蕊, 范吉标, 胡龙兴, 陈良. 新型饲草开发利用的基础生物学问题[J]. 植物学报, 2022, 57(6): 826-836. |
[10] | 赵洪, 宋丽珍, 张玉娥, 程佑发, 薛勇彪. 饲草自交不亲和性与近交衰退[J]. 植物学报, 2022, 57(6): 742-755. |
[11] | 何晓玲, 刘鹏程, 马伯军, 陈析丰. 基于CRISPR/Cas9的基因编辑技术研究进展及其在植物中的应用[J]. 植物学报, 2022, 57(4): 508-531. |
[12] | 李强, 黄迎新, 周道玮, 丛山. 土壤氮磷添加下豆科草本植物生物固氮与磷获取策略的权衡机制[J]. 植物生态学报, 2021, 45(3): 286-297. |
[13] | 张瑞, 高彩霞. 基于双碱基编辑系统的植物基因靶向随机突变技术[J]. 植物学报, 2021, 56(1): 50-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||