植物学报 ›› 2022, Vol. 57 ›› Issue (6): 756-763.DOI: 10.11983/CBB22190
所属专题: 饲草生物学专辑 (2023年58卷2期、2022年57卷6期)
王娜1, 姜腾1, 王彬锡1,2, 牛丽芳1, 林浩1,*()
收稿日期:
2022-08-09
接受日期:
2022-10-09
出版日期:
2022-11-01
发布日期:
2022-11-18
通讯作者:
林浩
作者简介:
*E-mail: linhao@caas.cn基金资助:
Na Wang1, Teng Jiang1, Binxi Wang1,2, Lifang Niu1, Hao Lin1,*()
Received:
2022-08-09
Accepted:
2022-10-09
Online:
2022-11-01
Published:
2022-11-18
Contact:
Hao Lin
About author:
First author contact:†These authors contributed equally to this paper
摘要: 双单倍体育种通过单倍体诱导与加倍技术相结合实现遗传材料的快速纯合, 显著加快纯系的选育进程和效率, 是农业生物育种中的共性关键技术。该文简要回顾了诱导植物单倍体产生和染色体加倍的相关方法及研究进展, 重点介绍了新近发展的基因编辑介导的体内单倍体诱导技术, 并对单倍体育种技术在紫花苜蓿(Medicago sativa)等豆科牧草中的应用进行了探讨和展望。
王娜, 姜腾, 王彬锡, 牛丽芳, 林浩. 单倍体育种技术研究进展及其在苜蓿等豆科牧草中的应用. 植物学报, 2022, 57(6): 756-763.
Na Wang, Teng Jiang, Binxi Wang, Lifang Niu, Hao Lin. Advances in Haploid Breeding Technology and Its Application in Alfalfa and Other Legume Forages. Chinese Bulletin of Botany, 2022, 57(6): 756-763.
目的基因 | 植物物种 | 基因编辑类型 | 单倍体比例(%) | 参考文献 |
---|---|---|---|---|
AtCENH3 | Arabidopsis thaliana | Gene replacement and insertion | 25-45 | 2010 |
ZmCENH3 | Zea mays | Gene replacement and insertion/RNAi | 0.16-3.6 | 2016 |
TaCENH3 | Triticum aestivum | Gene replacement and insertion | 7 | 2020 |
ZmCENH3 | Z. mays | Site-specified knockout | 0.5-5 | 2021 |
ZmMTL | Z. mays | TALENs | 6.7 | 2017 |
ZmPLA1 | Z. mays | Site-specified knockout | 1.55-6.67 | 2017 |
ZmNLD | Z. mays | Gene replacement and insertion | 0.5-3.59 | 2017a |
OsMATL | Oryza sativa | Site-specified knockout | 2-6 | 2018 |
TaPLA | T. aestivum | Site-specified knockout | 5.88-15.66 | 2020a |
TaMTL | T. aestivum | Site-specified knockout | 11.8-31.6 | 2020b |
SiMTL | Setaria italica | Site-specified knockout | 1.75-3.49 | 2021 |
ZmDMP | Z. mays | Site-specified knockout | 0.1-0.3 | 2019 |
AtDMP8/9 | A. thaliana | Site-specified knockout | 0.92-3.23 | 2020 |
MtDMP8/9 | Medicago truncatula | Site-specified knockout | 0.29-0.82 | 2022 |
SlDMP | Solanum lycopersicum | Site-specified knockout | 0.49-3.68 | 2022a |
BnaDMP | Brassica napus | Site-specified knockout | 2.4 | 2022b |
ZmPLD3 | Z. mays | Site-specified knockout | 0.85-0.96 | 2021 |
ZmPOD65 | Z. mays | Site-specified knockout | 0.9-7.7 | 2022 |
表1 基因编辑技术介导的体内单倍体诱导相关基因
Table1 Related genes of in vivo haploid induction mediated by gene editing technology
目的基因 | 植物物种 | 基因编辑类型 | 单倍体比例(%) | 参考文献 |
---|---|---|---|---|
AtCENH3 | Arabidopsis thaliana | Gene replacement and insertion | 25-45 | 2010 |
ZmCENH3 | Zea mays | Gene replacement and insertion/RNAi | 0.16-3.6 | 2016 |
TaCENH3 | Triticum aestivum | Gene replacement and insertion | 7 | 2020 |
ZmCENH3 | Z. mays | Site-specified knockout | 0.5-5 | 2021 |
ZmMTL | Z. mays | TALENs | 6.7 | 2017 |
ZmPLA1 | Z. mays | Site-specified knockout | 1.55-6.67 | 2017 |
ZmNLD | Z. mays | Gene replacement and insertion | 0.5-3.59 | 2017a |
OsMATL | Oryza sativa | Site-specified knockout | 2-6 | 2018 |
TaPLA | T. aestivum | Site-specified knockout | 5.88-15.66 | 2020a |
TaMTL | T. aestivum | Site-specified knockout | 11.8-31.6 | 2020b |
SiMTL | Setaria italica | Site-specified knockout | 1.75-3.49 | 2021 |
ZmDMP | Z. mays | Site-specified knockout | 0.1-0.3 | 2019 |
AtDMP8/9 | A. thaliana | Site-specified knockout | 0.92-3.23 | 2020 |
MtDMP8/9 | Medicago truncatula | Site-specified knockout | 0.29-0.82 | 2022 |
SlDMP | Solanum lycopersicum | Site-specified knockout | 0.49-3.68 | 2022a |
BnaDMP | Brassica napus | Site-specified knockout | 2.4 | 2022b |
ZmPLD3 | Z. mays | Site-specified knockout | 0.85-0.96 | 2021 |
ZmPOD65 | Z. mays | Site-specified knockout | 0.9-7.7 | 2022 |
图2 基于CENH3的单倍体诱导系统中单亲染色体消除模型 正常亲本杂交; (B) CENH3突变体母本与正常父本杂交
Figure 2 Model of the uniparental chromosome elimination in the CENH3-based haploid inducer (A) Normal parent crossing; (B) Cross between CENH3 mutant female parent and normal male parent
[1] | 金京波, 王台, 程佑发, 王雷, 张景昱, 景海春, 种康 (2021). 我国牧草育种现状与展望. 中国科学院院刊 36, 660-665. |
[2] | 潘家驹 (1994). 作物育种学总论. 北京: 农业出版社. pp. 141-142. |
[3] | Alan AR, Mutschler MA, Brants A, Cobb E, Earle ED (2003). Production of gynogenic plants from hybrids of Allium cepa L. and A. roylei Stearn. Plant Sci 165, 1201-1211. |
[4] | Armstrong JM (1959). Pollen irradiation as a method of inducing variation in alfalfa. Can J Genet Cytol 1, 110-117. |
[5] | Bingham T (1971). Isolation of haploids of tetraploid alfalfa. Crop Sci 11, 433-435. |
[6] | Bohanec B, Jakse M, Havey MJ (2003). Genetic analyses of gynogenetic haploid production in onion. J Am Soc Hortic Sci 128, 571-574. |
[7] |
Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132, 3227-3243.
DOI PMID |
[8] | Chekurov VM, Razmakhnin EP (1999). Effect of inbreeding and growth regulators on the in vitro androgenesis of wheatgrass, Agropyron glaucum. Plant Breed 118, 571-573. |
[9] |
Chen HT, Zeng Y, Yang YZ, Huang LL, Tang BL, Zhang H, Hao F, Liu W, Li YH, Liu YB, Zhang XS, Zhang R, Zhang YS, Li YX, Wang K, He H, Wang ZK, Fan GY, Yang H, Bao AK, Shang ZH, Chen JH, Wang W, Qiu Q (2020). Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11, 2494.
DOI PMID |
[10] | Cheng ZX, Sun Y, Yang SH, Zhi H, Yin T, Ma XJ, Zhang HS, Diao XM, Guo Y, Li XH, Wu CY, Sui Y (2021). Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J 19, 1089-1091. |
[11] | Croser JS, Lülsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006). Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25, 139-157. |
[12] |
Gao CX (2021). Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
DOI PMID |
[13] | Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant JP, Rogowsky PM, Widiez T (2017a). Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36, 707-717. |
[14] | Gilles LM, Martinant JP, Rogowsky PM, Widiez T (2017b). Haploid induction in plants. Curr Biol 27, 1095-1097. |
[15] | Guha S, Maheshwari SC (1964). In vitro production of embryos from anthers of Datura. Nature 204, 497. |
[16] |
Jiang CL, Sun J, Li R, Yan SJ, Chen W, Guo L, Qin GC, Wang PC, Luo C, Huang WJ, Zhang QH, Fernie AR, Jackson D, Li X, Yan JB (2022). A reactive oxygen species burst causes haploid induction in maize. Mol Plant 15, 943-955.
DOI PMID |
[17] |
Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A (2019). State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet 132, 593-605.
DOI PMID |
[18] | Kasha KJ, Kao KN (1970). High frequency haploid production in barley (Hordeum vulgare L.). Nature 225, 874-876. |
[19] | Kasha KJ, Maluszynski M (2003). Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I, eds. Doubled Haploid Production in Crop Plants. A Manual. Dordrecht: Springer. pp. 1-4. |
[20] | Keller ERJ, Korzun L (1996). Ovary and ovule culture for haploid production. In: Jain SM, Sopory SK, Veilleux RE, eds. In Vitro Haploid Production in Higher Plants. Dordrecht: Springer. pp. 217-236. |
[21] | Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen ZY, McCuiston J, Wang WL, Liebler T, Bullock P, Martin B (2017). MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105-109. |
[22] |
Kelliher T, Starr D, Wang WL, McCuiston J, Zhong H, Nuccio ML, Martin B (2016). Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7, 414.
DOI PMID |
[23] |
Kermicle JL (1969). Androgenesis conditioned by a mutation in maize. Science 166, 1422-1424.
DOI PMID |
[24] | Kiviharju E, Moisander S, Laurila J (2005). Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue Organ Cult 81, 1-9. |
[25] | Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G, Gordillo GA (2012). Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52, 623-630. |
[26] | Li Y, Lin Z, Yue Y, Zhao HM, Fei XH, E LZ, Liu CX, Chen SJ, Lai JS, Song WB (2021). Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat Plants 7, 1579-1588. |
[27] | Liu CX, Li X, Meng DX, Zhong Y, Chen C, Dong X, Xu XW, Chen BJ, Li W, Li L, Tian XL, Zhao HM, Song WB, Luo HS, Zhang QH, Lai JS, Jin WW, Yan JB, Chen SJ (2017). A 4 bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10, 520-522. |
[28] | Liu CX, Zhong Y, Qi XL, Chen M, Liu ZK, Chen C, Tian XL, Li JL, Jiao YY, Wang D, Wang YW, Li MR, Xin MM, Liu WX, Jin WW, Chen SJ (2020a). Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J 18, 316-318. |
[29] | Liu HY, Wang K, Jia ZM, Gong Q, Lin ZS, Du LP, Pei XW, Ye XG (2020b). Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71, 1337-1349. |
[30] |
Long RC, Zhang F, Zhang ZW, Li MN, Chen L, Wang X, Liu WW, Zhang TJ, Yu LX, He F, Jiang XQ, Yang XJ, Yang CF, Wang Z, Kang JM, Yang QC (2022). Genome assembly of alfalfa cultivar Zhongmu-4 and identification of SNPs associated with agronomic traits. Genom Proteom Bioinf 20, 14-28.
DOI PMID |
[31] | Lv J, Yu K, Wei J, Gui HP, Liu CX, Liang DW, Wang YL, Zhou HJ, Carlin R, Rich R, Lu TC, Que QD, Wang WC, Zhang XP, Kelliher T (2020). Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 38, 1397-1401. |
[32] | Ma R, Guo YD, Pulli S (2004). Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell Tissue Organ Cult 76, 147-157. |
[33] | Prigge V, Xu XW, Li L, Babu R, Chen SJ, Atlin GN, Melchinger AE (2012). New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190, 781-793. |
[34] | Radović J, Sokolović D, Marković J (2009). Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol Anim Husb 25, 465-475. |
[35] | Ravi M, Chan SWL (2010). Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615-618. |
[36] | Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen CB, Murata M, Chan SWL (2011). Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet 7, e1002121. |
[37] |
Ren JJ, Wu PH, Trampe B, Tian XL, Lübberstedt T, Chen SJ (2017). Novel technologies in doubled haploid line development. Plant Biotechnol J 15, 1361-1370.
DOI PMID |
[38] | Saunders JW, Bingham ET (1972). Production of alfalfa plants from callus tissue. Crop Sci 12, 804-808. |
[39] |
Seguí-Simarro JM, Nuez F (2008). Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120, 358-369.
DOI PMID |
[40] |
Shen C, Du HL, Chen Z, Lu HW, Zhu FG, Chen H, Meng XZ, Liu QW, Liu P, Zheng LH, Li XX, Dong JL, Liang CZ, Wang T (2020). The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant 13, 1250-1261.
DOI PMID |
[41] | Stanford EH, Clement WM (1958). Cytology and crossing behavior of a haploid alfalfa plant. Agron J 50, 589-592. |
[42] | Sun GL, Geng SF, Zhang HJ, Jia ML, Wang ZY, Deng ZY, Tao S, Liao RY, Wang F, Kong XC, Fu MX, Liu SS, Li AL, Mao L (2022). Matrilineal empowers wheat pollen with haploid induction potency by triggering post mitosis reactive oxygen species activity. New Phytol 233, 2405-2414. |
[43] | Thompson KF (1974). Homozygous diploid lines from naturally occurring haploids. In: Proc 4th Int Rapskongr. 4th International Rapeseed Congress pp.119-124. |
[44] |
Wang C, Liu Q, Shen Y, Hua YF, Wang JJ, Lin JR, Wu MG, Sun TT, Cheng ZK, Mercier R, Wang KJ (2019). Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37, 283-286.
DOI PMID |
[45] | Wang D, Khurshid M, Sun ZM, Tang YX, Zhou ML, Wu YM (2016). Genetic engineering of alfalfa (Medicago sativa L.). Protein Pept Lett 23, 495-502. |
[46] | Wang N, Gent JI, Dawe RK (2021). Haploid induction by a maize cenh3null mutant. Sci Adv 7, eabe2299. |
[47] | Wang N, Xia XZ, Jiang T, Li LL, Zhang PC, Niu LF, Cheng HM, Wang KJ, Lin H (2022). In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol J 20, 22-24. |
[48] |
Xie E, Li YF, Tang D, Lv YL, Shen Y, Cheng ZK (2019). A strategy for generating rice apomixis by gene editing. J Integr Plant Biol 61, 911-916.
DOI |
[49] |
Yang S, Zu YQ, Li B, Bi YF, Jia L, He YM, Li Y (2019). Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress. Chemosphere 220, 69-76.
DOI PMID |
[50] |
Yao L, Zhang Y, Liu CX, Liu YB, Wang YL, Liang DW, Liu JT, Sahoo G, Kelliher T (2018). OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4, 530-533.
DOI PMID |
[51] |
Zagorska N, Dimitrov B (1995). Induced androgenesis in alfalfa (Medicago sativa L.). Plant Cell Rep 14, 249-252.
DOI PMID |
[52] |
Zhong Y, Chen BJ, Li MR, Wang D, Jiao YY, Qi XL, Wang M, Liu ZK, Chen C, Wang YW, Chen M, Li JL, Xiao ZJ, Cheng DH, Liu WX, Boutilier K, Liu CX, Chen SJ (2020). A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat Plants 6, 466-472.
DOI PMID |
[53] | Zhong Y, Chen BJ, Wang D, Zhu XJ, Li MR, Zhang JZ, Chen M, Wang M, Riksen T, Liu JC, Qi XL, Wang YW, Cheng DH, Liu ZK, Li JL, Chen C, Jiao YY, Liu WX, Huang SW, Liu CX, Boutilier K, Chen SJ (2022a). In vivo maternal haploid induction in tomato. Plant Biotechnol J 20, 250-252. |
[54] |
Zhong Y, Liu CX, Qi XL, Jiao YY, Wang D, Wang YW, Liu ZK, Chen C, Chen BJ, Tian XL, Li JL, Chen M, Dong X, Xu XW, Li L, Li W, Liu WX, Jin WW, Lai JS, Chen SJ (2019). Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5, 575-580.
DOI PMID |
[55] | Zhong Y, Wang YW, Chen BJ, Liu JC, Wang D, Li MR, Qi XL, Liu CX, Boutilier K, Chen SJ (2022b). Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. J Integr Plant Biol 64, 1281-1294. |
[1] | 谢华玲, 杨艳萍, 董瑜, 王台. 苜蓿国际发展态势分析[J]. 植物学报, 2021, 56(6): 740-750. |
[2] | 刘承武, 赵忠. 豆科植物SHR-SCR模块——根瘤“奠基细胞”的命运推手[J]. 植物学报, 2020, 55(6): 661-665. |
[3] | 冯银平, 沈海花, 罗永开, 徐龙超, 刘上石, 朱言坤, 赵梦颖, 邢爱军, 方精云. 种植密度对苜蓿生长及生物量的影响[J]. 植物生态学报, 2020, 44(3): 248-256. |
[4] | 曾引伟, 曹玉曼, 沙煦旸, 李淑霞, 杨培志, 呼天明, 刘金隆. 一种简单有效的非损伤观测根瘤和根系形态的方法[J]. 植物学报, 2018, 53(5): 661-670. |
[5] | 魏解冰, 狄少康, 文江祁, 庞永珍. 植物Tnt1反转录转座子突变体库的特征及应用[J]. 植物学报, 2016, 51(6): 817-826. |
[6] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
[7] | 刘志英, 李西良, 李峰, 王宗礼, 孙启忠. 紫花苜蓿秋眠性对低温驯化过程与越冬耐寒适应的作用机理[J]. 植物生态学报, 2015, 39(6): 635-648. |
[8] | 朱林,祁亚淑,许兴. 宁夏盐池不同坡位旱地紫苜蓿水分来源[J]. 植物生态学报, 2014, 38(11): 1226-1240. |
[9] | 覃凤飞,李强,崔棹茗,李洪萍,杨智然. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性[J]. 植物生态学报, 2012, 36(4): 333-345. |
[10] | 孙东宝, 王庆锁. 水分对苜蓿叶片光合特性的影响[J]. 植物生态学报, 2012, 36(1): 72-80. |
[11] | 高艳, 田秋英, 石凤翎, 李凌浩, 张文浩. 黄花苜蓿与蒺藜苜蓿对土壤低磷胁迫适应策略的比较研究[J]. 植物生态学报, 2011, 35(6): 632-640. |
[12] | 赵紫华, 王颖, 贺达汉, 张蓉, 朱猛蒙, 董风林. 苜蓿草地生境丧失与破碎化对昆虫物种丧失与群落重建的影响[J]. 生物多样性, 2011, 19(4): 453-462. |
[13] | 燕丽萍, 夏阳, 毛秀红, 刘翠兰, 梁慧敏. 转BADH基因紫花苜蓿山苜2号品种的抗盐性鉴定及系统选育[J]. 植物学报, 2011, 46(3): 293-301. |
[14] | 贾宇, 徐炳成, 王晓凌, 孙国均, 徐进章, 李凤民. 半干旱黄土丘陵区垄沟集雨对紫花苜蓿人工草地土壤水分和产草量的影响[J]. 植物生态学报, 2007, 31(3): 470-475. |
[15] | 白文明, 左强, 李保国. 乌兰布和沙区紫花苜蓿根系吸水模型[J]. 植物生态学报, 2001, 25(4): 431-437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||