植物学报 ›› 2020, Vol. 55 ›› Issue (2): 240-253.DOI: 10.11983/CBB19187
• 专题论坛 • 上一篇
收稿日期:
2019-09-23
接受日期:
2019-12-31
出版日期:
2020-03-01
发布日期:
2020-02-12
通讯作者:
赵翔
基金资助:
Qingping Zhao,Shifan Ma,Ruixi Li,Tianyu Wang,Xiang Zhao()
Received:
2019-09-23
Accepted:
2019-12-31
Online:
2020-03-01
Published:
2020-02-12
Contact:
Xiang Zhao
摘要: 向光素PHOT1和PHOT2感受蓝光刺激后发生自磷酸化激活, 调节植物气孔开放、叶绿体运动、叶片伸展和定位以及向光性(包括根的负向光性和下胚轴的向光性)等多种适应性反应。拟南芥(Arabidopsis thaliana) NRL (NPH3/RPT2-Like)家族成员在向光素介导的信号途径中发挥重要作用, 其中NPH3特异调控下胚轴的向光性以及叶片的伸展与定位, RPT2参与调节植物向光性、叶片的伸展与定位以及叶绿体聚光反应等。NCH1是新发现的NRL家族成员, 与RPT2以功能冗余的方式调节叶绿体的聚光反应, 但不调节避光反应。该文主要综述了NRL蛋白家族成员在向光素介导蓝光信号通路中的作用, 并展望了未来的研究方向, 旨在为全面揭示NRL家族成员的功能提供线索。
赵青平,马世凡,李芮茜,王田雨,赵翔. 拟南芥NPH3/RPT2-Like (NRL)家族蛋白在向光素信号转导通路中的作用研究进展. 植物学报, 2020, 55(2): 240-253.
Qingping Zhao,Shifan Ma,Ruixi Li,Tianyu Wang,Xiang Zhao. Advances of NPH3/RPT2-Like (NRL) Family Proteins in Phototropin-mediated Signaling in Arabidopsis thaliana. Chinese Bulletin of Botany, 2020, 55(2): 240-253.
图1 贝叶斯算法构建的拟南芥NRL (NPH3/RPT2-Like)家族蛋白系统进化树 进化树主要参考Suetsugu等(2016)和Christie等(2018)已经报道的进化树, 但分支结构略有不同。6个主要分支颜色的调整以及命名的加入采用Adobe illustrator软件。
Figure 1 Bayesian phylogenetic tree of the NPH3/RPT2-Like (NRL) family protein in Arabidopsis Construction of this phylogenetic tree was based on Suetsugu et al. (2016) and Christie et al. (2018) with slight modifications. The colors and names of six major clades of NRL proteins in Arabidopsis were constructed using the Adobe illustrator software.
[1] | 刘广超, 丁兆军 ( 2018). 生长素介导环境信号调控植物的生长发育. 植物学报 53, 17-26. |
[2] | 赵翔, 王琳丹, 李园园, 赵青平, 张骁 ( 2014). PHOT2介导拟南芥下胚轴向光弯曲调节子的筛选与鉴定. 植物学报 49, 254-261. |
[3] | 赵翔, 赵青平, 杨煦, 慕世超, 张骁 ( 2015). 向光素调节植物向光性及其与光敏色素/隐花色素的相互关系. 植物学报 50, 122-132. |
[4] | Aggarwal C, Banaś AK, Kasprowicz-Maluśki A, Borghetti C, Łabuz J, Dobrucki J, Gabryś H ( 2014). Blue-lightactivated phototropin 2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. J Exp Bot 65, 3263-3276. |
[5] | Assmann SM, Simoncini L, Schroeder JI ( 1985). Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318, 285-287. |
[6] | Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS ( 2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134, 28-31. |
[7] | Boex-Fontvieille E, Davanture M, Jossier M, Zivy M, Hodges M, Tcherkez G ( 2014). Photosynthetic activity influences cellulose biosynthesis and phosphorylation of proteins involved therein in Arabidopsis leaves. J Exp Bot 65, 4997-5010. |
[8] | Briggs WR, Christie JM ( 2002). Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7, 204-210. |
[9] | Cheng YF, Qin GJ, Dai XH, Zhao YD ( 2008). NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 105, 21017-21022. |
[10] | Christie JM, Blackwood L, Petersen J, Sullivan S ( 2015). Plant flavoprotein photoreceptors. Plant Cell Physiol 56, 401-413. |
[11] | Christie JM, Murphy AS ( 2013). Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100, 35-46. |
[12] | Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR ( 1998). Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282, 1698-1701. |
[13] | Christie JM, Suetsugu N, Sullivan S, Wada M ( 2018). Shining light on the function of NPH3/RPT2-like proteins in phototropin signaling. Plant Physiol 176, 1015-1024. |
[14] | Christie JM, Yang HB, Richter GL, Sullivan S, Thomson CE, Lin JS, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS ( 2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9, e1001076. |
[15] | de Carbonnel M, Davis P, Roelfsema MR, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C ( 2010). The Arabidopsis PHYTOCHROME KINASE SUBSTRATE 2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152, 1391-1405. |
[16] | Demarsy E, Fankhauser C ( 2009). Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12, 69-74. |
[17] | Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C ( 2012). Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31, 3457-3467. |
[18] | Deng ZP, Oses-Prieto JA, Kutschera U, Tseng TS, Hao LZ, Burlingame AL, Wang ZY, Briggs WR ( 2014). Blue light-induced proteomic changes in etiolated Arabidopsis seedlings. J Proteome Res 13, 2524-2533. |
[19] | Ding ZJ, Galván-Ampudia CS, Demarsy E, Łangowski L, Kleine-Vehn J, Fan YW, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J ( 2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13, 447-452. |
[20] | Fankhauser C, Christie JM ( 2015). Plant phototropic growth. Curr Biol 25, R384-R389. |
[21] | Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma LG, Shen YP, Feng SH, Bostick M, Callis J, Hellmann H, Deng XW ( 2005). Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17, 1180-1195. |
[22] | Folta KM, Kaufman LS ( 2003). Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol Biol 51, 609-618. |
[23] | Folta KM, Lieg EJ, Durham T, Spalding EP ( 2003). Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133, 1464-1470. |
[24] | Gingerich DJ, Gagne JM, Salter DW, Hellmann H, Estelle M, Ma LG, Vierstra RD ( 2005). Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a- brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem 280, 18810-18821. |
[25] | Haga K, Tsuchida-Mayama T, Yamada M, Sakai T ( 2015). Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses. Plant Cell 27, 1098-1112. |
[26] | Harada A, Takemiya A, Inoue SI, Sakai T, Shimazaki K ( 2013). Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol 54, 36-47. |
[27] | Hetherington AM, Woodward FI ( 2003). The role of stomata in sensing and driving environmental change. Nature 424, 901-908. |
[28] | Higa T, Suetsugu N, Wada M ( 2014). Plant nuclear photorelocation movement. J Exp Bot 65, 2873-2881. |
[29] | Hiyama A, Takemiya A, Munemasa S, Okuma E, Sugiyama N, Tada Y, Murata Y, Shimazaki KI ( 2017). Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat Commun 8, 1284. |
[30] | Inada S, Ohgishi M, Mayama T, Okada K, Sakai T ( 2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887-896. |
[31] | Inoue SI, Kinoshita T ( 2017). Blue light regulation of stomatal opening and the plasma membrane H+-ATPase . Plant Physiol 174, 531-538. |
[32] | Inoue SI, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008a). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105, 5626-5631. |
[33] | Inoue SI, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008b). Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1, 15-26. |
[34] | Inoue SI, Matsushita T, Tomokiyo Y, Matsumoto M, Nakayama KI, Kinoshita T, Shimazaki K ( 2011). Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol 156, 117-128. |
[35] | Jeong RD, Chandra-Shekara AC, Barman SR, Navarre D, Klessig DF, Kachroo A, Kachroo P ( 2010). Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci USA 107, 13538-13543. |
[36] | Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M ( 2009). Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106, 13106-13111. |
[37] | Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M ( 2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138-2141. |
[38] | Kaiserli E, Sullivan S, Jones MA, Feeney KA, Christie JM ( 2009). Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light. Plant Cell 21, 3226-3244. |
[39] | Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C ( 2014). Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J 77, 393-403. |
[40] | Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M ( 2004). Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135, 1388-1397. |
[41] | Kimuraa T, Tsuchida-Mayamab T, Imaia H, Okajimad K, Ito K, Sakai T ( 2020). Arabidopsis ROOT PHOTOTROPISM2 is a light-dependent dynamic modulator of phototropin 1. Plant Cell doi: 10.1105/tpc.19.00926. |
[42] | Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K ( 2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656-660. |
[43] | Kong SG, Wada M ( 2014). Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. Biochim Biophys Acta 1837, 522-530. |
[44] | Kong SG, Wada M ( 2016). Molecular basis of chloroplast photorelocation movement. J Plant Res 129, 159-166. |
[45] | Lalanne E, Honys D, Johnson A, Borner GHH, Lilley KS, Dupree P, Grossniklaus U, Twell D ( 2004). SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16, 229-240. |
[46] | Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C ( 2006). PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci USA 103, 10134-10139. |
[47] | Li YT, Dai XH, Cheng YF, Zhao YD ( 2011). NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4, 171-179. |
[48] | Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR ( 2014). Phototropism: growing towards an understanding of plant movement. Plant Cell 26, 38-55. |
[49] | Liscum E, Briggs WR ( 1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7, 473-485. |
[50] | Liscum E, Briggs WR ( 1996). Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol 112, 291-296. |
[51] | Liscum E, Nittler P, Koskie K ( 2020). The continuing arc toward phototropic enlightenment. J Exp Bot 71, 1652-1658 |
[52] | Marten I, Deeken R, Hedrich R, Roelfsema MR ( 2010). Light-induced modification of plant plasma membrane ion transport. Plant Biol 12, 64-79. |
[53] | Moni A, Lee AY, Briggs WR, Han IS ( 2015). The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. Plant Biol 17, 34-40. |
[54] | Morrow J, Willenburg KT, Liscum E ( 2018). Phototropism in land plants: molecules and mechanism from light perception to response. Front Biol 5, 342-357. |
[55] | Motchoulski A, Liscum E ( 1999). Arabidopsis NPH3: a NPH1 photoreceptor-linteracting protein essential for phototropism. Science 286, 961-964. |
[56] | Mott KA, Sibbernsen ED, Shope JC ( 2008). The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31, 1299-1306. |
[57] | Pedmale UV, Celaya RB, Liscum E ( 2010). Phototropism: mechanism and outcomes. Arabidopsis Book 8, e0125. |
[58] | Pedmale UV, Liscum E ( 2007). Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem 282, 19992-20001. |
[59] | Petricka JJ, Clay NK, Nelson TM ( 2008). Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J 56, 251-263. |
[60] | Pfeifer A, Mathes T, Lu YH, Hegemann P, Kottke T ( 2010). Blue light induces global and localized conformational changes in the kinase domain of full-length phototropin. Biochemistry 49, 1024-1032. |
[61] | Roberts D, Pedmale UV, Morrow J, Sachdev S, Lechner E, Tang XB, Zheng N, Hannink M, Genschik P, Liscum E ( 2011). Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-ring E3 ubiquitin ligase CRL3 NPH3. Plant Cell 23, 3627-3640. |
[62] | Roelfsema MRG, Hedrich R ( 2005). In the light of stomatal opening: new insights into 'the Watergate'. New Phytol 167, 665-691. |
[63] | Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K ( 2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98, 6969-6974. |
[64] | Sakai T, Wada T, Ishiguro S, Okada K ( 2000). RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225-236. |
[65] | Sakamoto K, Briggs WR ( 2002). Cellular and subcellular localization of phototropin 1. Plant Cell 14, 1723-1735. |
[66] | Salomon M, Knieb E, von Zeppelin T, Rüdiger W ( 2003). Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42, 4217-4225. |
[67] | Shang BS, Zang YH, Zhao X, Zhu JD, Fan C, Guo XN, Zhang X ( 2019). Functional characterization of GhPHOT2 in chloroplast avoidance of Gossypium hirsutum. Plant Physiol Biochem 135, 51-60. |
[68] | Shimazaki K, Doi M, Assmann SM, Kinoshita T, ( 2007). Light regulation of stomatal movement. Annu Rev Plant Biol 58, 219-247. |
[69] | Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E ( 2008). Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1, 129-144. |
[70] | Suetsugu N, Higa T, Kong SG, Wada M ( 2015). PLASTID MOVEMENT IMPAIRED 1 and PLASTID MOVEMENT IMPAIRED1-RELATED 1 mediate photorelocation movements of both chloroplasts and nuclei. Plant Physiol 169, 1155-1167. |
[71] | Suetsugu N, Takami T, Ebisu Y, Watanabe H, Iiboshi C, Doi M, Shimazaki K ( 2014). Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. PLoS One 9, e108374. |
[72] | Suetsugu N, Takemiya A, Kong SG, Higa T, Komatsu A, Shimazaki K, Kohchi T, Wada M ( 2016). RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc Natl Acad Sci USA 113, 10424-10429. |
[73] | Suetsugu N, Wada M ( 2017). Two coiled-coil proteins, WEB1 and PMI2, suppress the signaling pathway of chloroplast accumulation response that is mediated by two phototropin-interacting proteins, RPT2 and NCH1, in seed plants. Int J Mol Sci 18, 1469. |
[74] | Sullivan S, Kharshiing E, Laird J, Sakai T, Christie JM ( 2019). Deetiolation enhances phototropism by modulating NON-PHOTOTROPIC HYPOCOTYL 3 phosphorylation status. Plant Physiol 180, 1119-1131. |
[75] | Sullivan S, Thomson CE, Kaiserli E, Christie JM ( 2009). Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett 583, 2187-2193. |
[76] | Sun JQ, Qi LL, Li YN, Zhai QZ, Li CY ( 2013). PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25, 2102-2114. |
[77] | Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG ( 2019). Acquiring control: the evolution of stomatal signaling pathways. Trends Plant Sci 24, 342-351. |
[78] | Takemiya A, Shimazaki K ( 2016). Arabidopsis phot1 and phot2 phosphorylate BLUS1 kinase with different efficiencies in stomatal opening. J Plant Res 129, 167-174. |
[79] | Tseng TS, Briggs WR ( 2010). The Arabidopsis rcn1-1 mutation impairs dephosphorylation of Phot2, resulting in enhanced blue light responses. Plant Cell 22, 392-402. |
[80] | Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T ( 2008). Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci 174, 626-633. |
[81] | Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S ( 2010). Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J 62, 653-662. |
[82] | Tsutsumi T, Takemiya A, Harada A, Shimazaki K ( 2013). Disruption of ROOT PHOTOTROPISM 2 gene does not affect phototropin-mediated stomatal opening. Plant Sci 201-202, 93-97. |
[83] | Wada M ( 2013). Chloroplast movement. Plant Sci 210, 177-182. |
[84] | Wada M ( 2016). Chloroplast and nuclear photorelocation movements. Proc Japan Acad Ser B 92, 387-411. |
[85] | Wan YL, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W ( 2008). The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant 1, 103-117. |
[86] | Wan YL, Jasik J, Wang L, Hao HQ, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin JX ( 2012). The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24, 551-565. |
[87] | Willige BC, Ahlers S, Zourelidou M, Barbosa ICR, Demarsy E, Trevisan M, Davis PA, Roelfsema MRG, Hangarter R, Fankhauser C, Schwechheimer C ( 2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25, 1674-1688. |
[88] | Yamauchi S, Takemiya A, Sakamoto T, Kurata T, Tsutsumi T, Kinoshita T, Shimazaki K ( 2016). The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol 171, 2731-2743. |
[89] | Zhang D, Wengier D, Shuai B, Gui CP, Muschietti J, McCormick S, Tang WH ( 2008). The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148, 1368-1379. |
[90] | Zhang L, Du LQ, Shen CJ, Yang YJ, Poovaiah BW ( 2014). Regulation of plant immunity through ubiquitin-mediated modulation of Ca 2+-calmodulin-AtSR1/CAMTA3 signaling . Plant J 78, 269-281. |
[91] | Zhao QP, Zhu JD, Li NN, Wang XN, Zhao X, Zhang X ( 2019). Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis. J Integr Plant Biol doi: 10.1111/ jipb.12813. |
[92] | Zhao X, Wang YL, Qiao XR, Wang J, Wang LD, Xu CS, Zhang X ( 2013). Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol 162, 1539-1551. |
[93] | Zhao X, Zhao QP, Xu CY, Wang J, Zhu JD, Shang BS, Zhang X ( 2018). Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana. J Integr Plant Biol 60, 562-577. |
[1] | 杨继轩, 王雪霏, 顾红雅. 西藏野生拟南芥开花时间变异的遗传基础[J]. 植物学报, 2024, 59(3): 373-382. |
[2] | 陈艳晓, 李亚萍, 周晋军, 解丽霞, 彭永彬, 孙伟, 和亚男, 蒋聪慧, 王增兰, 郑崇珂, 谢先芝. 拟南芥光敏色素B氨基酸位点突变对其结构与功能的影响[J]. 植物学报, 2024, 59(3): 481-494. |
[3] | 王钢, 王二涛. “卫青不败由天幸”——WeiTsing的广谱抗根肿病机理被揭示[J]. 植物学报, 2023, 58(3): 356-358. |
[4] | 杨永青, 郭岩. 植物细胞质外体pH感受机制的解析[J]. 植物学报, 2022, 57(4): 409-411. |
[5] | 支添添, 周舟, 韩成云, 任春梅. PAD4突变加速拟南芥酪氨酸降解缺陷突变体sscd1的程序性细胞死亡[J]. 植物学报, 2022, 57(3): 288-298. |
[6] | 李艳艳, 齐艳华. 植物Aux/IAA基因家族生物学功能研究进展[J]. 植物学报, 2022, 57(1): 30-41. |
[7] | 车永梅, 孙艳君, 卢松冲, 侯丽霞, 范欣欣, 刘新. AtMYB77促进NO合成参与调控干旱胁迫下拟南芥侧根发育[J]. 植物学报, 2021, 56(4): 404-413. |
[8] | 李秋信, 迟伟, 季代丽. CURT1调控类囊体膜弯曲的研究进展[J]. 植物学报, 2021, 56(4): 462-469. |
[9] | 王婷, 羊欢欢, 赵弘巍, JosefVoglmeir, 刘丽. 蛋白质N-糖基化在拟南芥生长周期中的变化规律及去糖基化对根发育的影响[J]. 植物学报, 2021, 56(3): 262-274. |
[10] | 林雨晴, 齐艳华. 生长素输出载体PIN家族研究进展[J]. 植物学报, 2021, 56(2): 151-165. |
[11] | 杜斐, 焦雨铃. WUSCHEL介导的固有免疫: 植物干细胞抵御病毒侵害的新机制[J]. 植物学报, 2020, 55(5): 537-540. |
[12] | 马龙, 李桂林, 李师鹏, 蒋苏. 根尖整体透明技术改良[J]. 植物学报, 2020, 55(5): 596-604. |
[13] | 张楠,刘自广,孙世臣,刘圣怡,林建辉,彭疑芳,张晓旭,杨贺,岑曦,吴娟. 拟南芥AtR8 lncRNA对盐胁迫响应及其对种子萌发的调节作用[J]. 植物学报, 2020, 55(4): 421-429. |
[14] | 贺芳芳,陈慧泽,冯金林,高琳,牛娇,韩榕. 拟南芥黏连蛋白RAD21对增强UV-B辐射后细胞分裂的响应[J]. 植物学报, 2020, 55(4): 407-420. |
[15] | 武亮, 戚益军. 小RNA, 大本领: 22 nt siRNAs在植物适应逆境中的重要作用[J]. 植物学报, 2020, 55(3): 270-273. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||