植物学报 ›› 2025, Vol. 60 ›› Issue (5): 1-0.DOI: 10.11983/CBB25014 cstr: 32102.14.CBB25014
• 研究论文 •
郑琪1,2
收稿日期:
2025-01-27
修回日期:
2025-04-19
出版日期:
2025-09-10
发布日期:
2025-07-08
通讯作者:
郑琪
基金资助:
Received:
2025-01-27
Revised:
2025-04-19
Online:
2025-09-10
Published:
2025-07-08
摘要: 摘要:由于人工驯化与现代育种操作,普通小麦(Triticum aestivum L.)的遗传多样性日渐狭窄,更容易受到病虫害威胁。通过远缘杂交将野生近缘种的抗病基因导入小麦,有助于拓宽小麦的遗传基础,为培育抗病品种提供新抗源。十倍体长穗偃麦草(Thinopyrum ponticum (Podp.) Barkworth and D. R. Dewey)是小麦遗传改良中应用最为广泛的近缘物种之一,对小麦锈病等多种病害表现出良好抗性。利用远缘杂交和染色体工程,我们创制了一份小麦-长穗偃麦草种质材料WTS135,对叶锈菌(Puccinia triticina Eriks.)生理小种THTT表现免疫。系谱分析表明其叶锈病抗性来源于长穗偃麦草外源染色体。顺序基因组原位杂交(Genomic in situ hybridization,GISH)-荧光原位杂交分析显示,一对十倍体长穗偃麦草染色体替换了小麦7D染色体。液相芯片分析表明外源染色体属于第七部分同源群,其近着丝粒区的信号密度及丰度明显较低,与GISH分析结果互相佐证,因此推测WTS135是一个7St(7D)的二体异代换系。通过分子标记检测,WTS135携带的抗病基因与已知的长穗偃麦草第七部分同源群抗叶锈病基因Lr19和Lr29不同,推测为一个抗叶锈病新基因。借助Specific-locus amplified fragment sequencing技术,开发了10个长穗偃麦草特异引物,可用于快速追踪WTS135中的外源染色质。表型调查显示,WTS135的产量与轮回亲本济麦22无显著性差异,可直接用于小麦的抗病育种。
郑琪. 新型小麦-长穂偃麦草抗叶锈病代换系的细胞遗传学分析与分子标记开发. 植物学报, 2025, 60(5): 1-0.
[1]Abhishek D.Tripathi, Richa Mishra, Kamlesh K. Maurya, Ram B. Singh, Douglas W. Wilson(2019).Chapter 1-Estimates for World Population and Global Food Availability for Global Health.New York: Academic Press, :3-24. [2]Deng PC, Du X, Wang YZ, Yang XY, Cheng XF, Huang CX, Li TT, Li TD, Chen CH, Zhao JX, Wang CY, Liu XL, Tian ZR, Ji WQ(2024).GenoBaits?WheatplusEE: a targeted capture sequencing panel for quick and accurate identification of wheat-Thinopyrum derivatives.Theoretical And Applied Genetics, 137:36-36. [3]Duan ZY, Xu XY, Li X, Li ZF, Ma J, Yao ZJ(2021).Leaf rust resistance gene analysis of 12 wheat cultivars in main producing areas.Crops, 37:20-27. [4]Friebe B, Jiang J, Gill BS, Dyck PL(1993).Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust.Theoretical and Applied Genetics, 86:141-149. [5]Friebe B, Jiang J, Raupp W, McIntosh R, Gill B(1996).Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status.Euphytica, 91:59-87. [6]Fu SL, Lv ZL, Qi B, Guo X, Li J, Liu B, Han FP(2012).Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition,substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight.Journal of Genetics and Genomics, 39:103-110. [7]Gupta SK, Charpe A, Prabhu KV, Haque QM(2006).Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat.Theoretical And Applied Genetics, 113:1027-1036. [8]Han F, Lamb JC, Birchler JA(2006).High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize.Proceedings of the National Academy of Sciences of the United States of America, 103:3238-3243. [9]He ZL, Zhang HK, Gao SH, Lercher MJ, Chen WH, Hu S(2016).Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees.Nucleic Acids Research, 44:236-241. [10]Huang XY, Zhu MQ, Zhuang LF, Zhang SY, Wang JJ, Chen XJ, Wang DR, Chen JY, Bao YG, Guo J, Zhang JL, Feng YG, Chu CG, Du P, Qi ZJ, Wang HG, Chen PD(2018).Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH.Theoretical And Applied Genetics, 131:1967-1986. [11]Ibba MI, Gupta OP, Govindan V, Johnson AAT, Brinch-Pedersen H, Nikolic M, Taleon V(2022).Editorial: Wheat biofortification to alleviate global malnutrition.Frontiers in Nutrition, 16:1001443-1001443. [12]Jiang J, Friebe B, Gill BS(1994).Chromosome painting of amigo wheat.Theoretical and Applied Genetics, 89:811-813. [13]Knott DR(1968).Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance.Canadian Journal of Genetics and Cytology, 10:695-696. [14]Knott DR, Sharma D(1966).The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation.Canadian Journal of Genetics and Cytology, 8:137-143. [15]Li J, Guan H, Wang Y, Dong C, Trethowan R, McIntosh RA, Zhang P(2024).Cytological and molecular characterization of wheat lines carrying leaf rust and stem rust resistance genes Lr24 and Sr24.Scientific Reports, 14:12816-12816. [16]Li MZ, Wang YZ, Liu XI, Li XF, Wang HG, Bao YQ(2021).Molecular Cytogenetic Identification of a novel wheat-Thinopyrum ponticum 1Js (1B) substitution line resistant to powdery mildew and leaf rust.Frontiers In Plant Science, 12:727734-727734. [17]Li ZS, Li B, Tong YP(2008).The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China.Journal of Genetics and Genomics, 35:451-456. [18]Lin GF, Chen H, Tian B, Sehgal SK, Singh L, Xie JZ, Rawat N, Juliana P, Singh N, Shrestha S, Wilson DL, Shult H, Lee H, Schoen AW, Tiwari VK, Singh RP, Guttieri MJ, Trick HN, Poland J, Bowden RL, Bai GH, Gill B, Liu SZ(2022).Cloning of the broadly effective wheat leaf rust resistance gene Lr42 transferred from Aegilops tauschii.Nature Communications, 13:3044-3044. [19]Ling HQ, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, Zhao Y, Zhang J, Li Y, Zhou W, Zhang B, Hu W, van Eijk MJT, Tang J, Witsenboer HMA, Zhao S, Li Z, Zhang A, Wang D, Liang C(2018).Genome sequence of the progenitor of wheat A subgenome Triticum urartu.Nature, 557:424-428. [20]Mago R, Zhang P, Xia XD, Zhang JP, Hoxha S, Lagudah E, Graner A, Dundas I(2019).Transfer of stem rust resistance gene SrB from Thinopyrum ponticum into wheat and development of a closely linked PCR-based marker.Theoretical And Applied Genetics, 132:371-382. [21]Mapuranga J, Chang J, Zhao J, Liang M, Li R, Wu Y, Zhang N, Zhang L, Yang W(2023).The underexplored mechanisms of wheat resistance to leaf rust.Plants (Basel), 12:3996-3996. [22]Niu Z, Klindworth DL, Yu G, L Friesen T, Chao S, Jin Y, Cai X, Ohm JB, Rasmussen JB, Xu SS(2014).Development and characterization of wheat lines carrying stem rust resistance gene Sr43 derived from Thinopyrum ponticum.Theoretical And Applied Genetics, 127:969-980. [23]Peto FH(1936).Hybridization of Triticum and Agropyron:II.cytology of the male parents and F1 generation. Canadian Respiratory Journal, 14:203-214. [24]Pirseyedi SM, Somo M, Poudel RS, Cai X, McCallum B, Saville B, Fetch T, Chao S, Marais F(2015).Characterization of recombinants of the Aegilops peregrina-derived Lr59 translocation of common wheat.Theoretical and Applied Genetics, 128:2403-2414. [25]Prasad P, Savadi S, Bhardwaj SC, Gupta PK(2020).The progress of leaf rust research in wheat.Fungal Biology, 124:537-550. [26]Reynolds M, Foulkes J, Furbank R, Griffiths S, King J, Murchie E, Parry M, Slafer G(2012).Achieving yield gains in wheat.Plant Cell Environment, 35:1799-1823. [27]Roelfs AP, Singh RP, Saari EE(1992).Rust diseases of wheat: concepts and methods of disease management.Mexico: CIMMYT, :7-14. [28]Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW(1984).Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance,chromosomal location,and population dynamics.Proceedings of the National Academy of Sciences of the United States of America, 81:8014-8018. [29]Sears ER(1973).Agropyron-wheat transfers induced by homoeologous pairing.Columbia: University of Missouri, :191-199. [30]Sears ER(1977).Analysis of wheat-Agropyron recombinant chromosomes.Madrid: Eucarpia, :63-72. [31]Singh A, Pallavi JK, Gupta P, Prabhu KV(2012).Identification of microsatellite markers linked to leaf rust resistance gene Lr25 in wheat.Journal of Applied Genetics, 53:19-25. [32]Singh RP(2016).Disease impact on wheat yield potential and prospects of genetic control.Annual Review of Phytopathology, 54:303-322. [33]Smith EL, Schlehuber AM, Young HC, Edwards LH(1968).Registration of agent wheat1 (reg.no. 471).Crop Science, 8:511-512. [34]Tar M, Purnhauser L, Csosz L, Mesterházy, Gyulai G(2002).Identification of molecular markers for an efficient leaf rust resistance gene (Lr29) in wheat.Acta Biologica Szegediensis, 46:133-134. [35]Tsitsin NV(1965).Remote hybridisation as a method of creating new species and varieties of plants.Euphytica, 14:326-330. [36]Wang K, Li MY, Hakonarson H(2010).ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.Nucleic Acids Research, 38:164-164. [37]Wang SW, Wang CY, Feng XB, Zhao JX, Deng PC, Wang YJ, Zhang H, Liu XL, Li TD, Chen CH, Wang BT, Ji WQ(2022).Molecular cytogenetics and development of St-chromosome-specific molecular markers of novel stripe rust resistant wheat-Thinopyrum intermedium and wheat-Thinopyrum ponticum substitution lines.BMC Plant Biology, 22:111-111. [38]Wang YZ, Cao Q, Zhang JI, Wang SW, Chen CH, Wang CY, Zhang H, Wang YI, Ji WQ(2020).Cytogenetic analysis and molecular marker development for a new wheat-Thinopyrum ponticum 1Js (1D) disomic substitution line with resistance to stripe rust and powdery mildew.Frontiers In Plant Science, 11:1282-1282. [39]Xu SS, Lyu ZF, Zhang N, Li MZ, Wei XY, Gao YH, Cheng XX, Ge WY, Li XF, Bao YG, Yang ZJ, Ma X, Wang HW, Kong LR(2023).Genetic mapping of the wheat leaf rust resistance gene Lr19 and development of translocation lines to break its linkage with yellow pigment.Theoretical And Applied Genetics, 136:200-200. [40]Yang GT, Deng PC, Ji WQ, Fu SL, Li HW, Li B, Li ZS, Zheng Q(2023).Physical mapping of a new powdery mildew resistance locus from Thinopyrum ponticum chromosome 4AgS.Frontiers in Plant Science, 14:1131205-1131205. [41]Zhang JL, Jie YZ, Yan LJ, Wang MM, Dong YL, Pang YF, Ren CC, Song J, Chen XD, Li XJ, Zhang PP, Yang DY, Zhang Y, Qi ZJ, Ru ZG(2024).Development and identification of a novel wheat-Thinopyrum ponticum disomic substitution line 5Ag (5D) with new genes conferring resistance to powdery mildew and leaf rust.BMC Plant Biology, 24:718-718. [42]Zhang L, Shi CC, Li LR, Li M, Meng QF, Yan HF, Liu DQ(2020).Race and Virulence Analysis of Puccinia triticina in China in 2014 and 2015.Plant Disease, 104:455-464. [43]Zhang W, Lukaszewski AJ, Kolmer J, Soria MA, Goyal S, Dubcovsky J(2005).Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum.Theoretical and Applied Genetics, 111:573-582. [44]Zhang XY, Dong YS, Wang RR(1996).Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization,isozyme analysis,and RAPD.Genome, 39:1062-1071. [45]Zhao GY, Zou C, Li K, Wang K, Li TB, Gao LF, Zhang XX, Wang HJ, Yang ZJ, Liu X, Jiang WK, Mao L, Kong XY, Jiao YN, Jia JZ(2017).The Aegilops tauschii genome reveals multiple impacts of transposons.Nature Plants, 3:946-955. [46]Zhu C, Wang YZ, Chen CH, Wang CY, Zhang AC, Peng NN, Wang YJ, Zhang H, Liu XL, Ji WQ(2017).Molecular cytogenetic identification of a wheat-Thinopyrum ponticum substitution line with stripe rust resistance.Genome, 60:860-867. |
[1] | 杨志刚, 张鹏程, 常海文, 康立茹, 左毅, 向浩鑫, 韩凤英. 基于形态学性状和SSR标记的辣椒种质资源遗传多样性分析(长英文摘要)[J]. 植物学报, 2025, 60(2): 218-234. |
[2] | 左毅, 刘红兵, 杨志刚, 李彬, 向浩鑫, 朱纯真, 王雷. 基于全基因组关联分析筛选山桐子性别分子标记(长英文摘要)[J]. 植物学报, 2024, 59(3): 414-421. |
[3] | 王文静, 朱钰, 张洪铭, 韦陆丹, 易庆平, 余晓敏, 刘雨菡, 张莉雪, 程文翰, 何燕红. 万寿菊舌状花花冠裂片突变体的形态鉴定及连锁标记开发[J]. 植物学报, 2023, 58(6): 893-904. |
[4] | 孙尚, 胡颖颖, 韩阳朔, 薛超, 龚志云. 水稻染色体双链寡核苷酸荧光原位杂交技术[J]. 植物学报, 2023, 58(3): 433-439. |
[5] | 张凡凡, 邢新滢, 石文清, 沈懿, 程祝宽. 植物寡核苷酸荧光原位杂交技术方法[J]. 植物学报, 2023, 58(2): 274-284. |
[6] | 李宏伟, 郑琪, 李滨, 李振声. 长穗偃麦草分子育种基础研究进展[J]. 植物学报, 2022, 57(6): 792-801. |
[7] | 谭文清, 陈军, 才宏伟. 黑麦草生物学研究进展[J]. 植物学报, 2022, 57(6): 802-813. |
[8] | 胡滨滨, 薛治慧, 张翠. 植物小RNA荧光原位杂交实验方法[J]. 植物学报, 2021, 56(3): 330-338. |
[9] | 车明哲, 王亚军, 马创新, 漆小泉. 大麦抗叶锈病慢锈性鉴定技术及抗性评价方法[J]. 植物学报, 2020, 55(5): 573-576. |
[10] | 徐婉约,王应祥. 染色体展片法观察拟南芥雄性减数分裂过程中的染色体形态[J]. 植物学报, 2019, 54(5): 620-624. |
[11] | 程新杰, 于恒秀, 程祝宽. 水稻减数分裂染色体分析方法[J]. 植物学报, 2019, 54(4): 503-508. |
[12] | 朱宇佳, 焦凯丽, 罗秀俊, 冯尚国, 王慧中. 基于SSR分子标记的酸浆属植物亲缘关系研究[J]. 植物学报, 2018, 53(3): 305-312. |
[13] | 郭琪, 郭大龙, 郭丽丽, 张琳, 侯小改. SSR分子标记在牡丹亲缘关系研究中的应用与研究进展[J]. 植物学报, 2015, 50(5): 652-664. |
[14] | 朱金燕, 杨梅, 嵇朝球, 王军, 杨杰, 范方军, 李文奇, 王芳权, 梁国华, 周勇, 仲维功. 利用染色体单片段代换系定位水稻芽期耐冷QTL[J]. 植物学报, 2015, 50(3): 338-345. |
[15] | 薛轶群, 宋凯, 范路生, 万迎朗, 林金星. pH敏感型荧光蛋白及其在植物细胞生物学中的应用[J]. 植物学报, 2015, 50(3): 394-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||