植物学报 ›› 2022, Vol. 57 ›› Issue (6): 802-813.DOI: 10.11983/CBB22161
所属专题: 饲草生物学专辑 (2023年58卷2期、2022年57卷6期)
收稿日期:
2022-07-20
接受日期:
2022-09-19
出版日期:
2022-11-01
发布日期:
2022-11-18
通讯作者:
才宏伟
作者简介:
*E-mail: caihw@cau.edu.cn基金资助:
Wenqing Tan1,2, Jun Chen2, Hongwei Cai2,*()
Received:
2022-07-20
Accepted:
2022-09-19
Online:
2022-11-01
Published:
2022-11-18
Contact:
Hongwei Cai
摘要: 黑麦草属(Lolium)和羊茅属(Festuca)包含冷季型牧草和草坪草等诸多重要草种, 如意大利黑麦草(L. multiflorum)、多年生黑麦草(L. perenne)、高羊茅(F. arundinacea)及草地羊茅(F. pratensis)。黑麦草产量高、适应性强、营养丰富、适口性好且消化率高, 可作为干草和青贮饲料, 是一种优质牧草。但由于其在我国的栽培受地理因素限制, 目前黑麦草在我国草牧业中所占比例很小。为提高黑麦草种植比例, 利用分子育种手段选育优良品种是我国黑麦草研究的重点方向之一。该文系统总结了黑麦草-羊茅复合体, 特别是黑麦草的研究进展, 包括分类与进化、分子标记开发、连锁图谱构建、重要农艺性状的数量性状位点(QTL)定位和全基因组关联分析(GWAS), 以及基因组测序、转录组分析、基因克隆和品种培育等, 并提出一些需要解决的生物学问题, 旨在为进一步加强黑麦草基础生物学研究和分子育种提供参考。
谭文清, 陈军, 才宏伟. 黑麦草生物学研究进展. 植物学报, 2022, 57(6): 802-813.
Wenqing Tan, Jun Chen, Hongwei Cai. Recent Progress in Biology of Genus Lolium. Chinese Bulletin of Botany, 2022, 57(6): 802-813.
图1 黑麦草小穗、植株和群体 (A) 从左至右为毒麦、意大利黑麦草和多年生黑麦草的小穗(bar=2 cm); (B) 毒麦成株(bar=6 cm); (C) 意大利黑麦草的育种群体
Figure 1 Panicle, adult plant and population of some Lolium species (A) From left to right are panicle of Lolium temulentum, L. multiflorum and L. perenne (bar=2 cm); (B) An adult plant of L. temulentum (bar=6 cm); (C) A breeding population of L. multiflorum
黑麦草物种 | 群体类型 | 所用标记 | 标记数 | 图谱长度(cM) | 连锁群 | 参考文献 |
---|---|---|---|---|---|---|
多年生黑麦草 | F1 | AFLP和EST-SSR | 471 | 930 | 7 | 1999 |
多年生黑麦草 | F1 | RFLP、AFLP和EST | 240 | 811 | 7 | 2002a |
多年生黑麦草 | F1 | RFLP、AFLP和SSR | 172 | 814 | 7 | 2002b |
多年生黑麦草 | F1 | EST-RFLP和EST-SSR | 159/125 | 963/757 | 7/7 | 2004 |
多年生黑麦草 | F2 | SSR | 376 | 484.9 | 7 | 2006 |
多年生黑麦草 | F2 | DArT | 326 | 966 | 7 | 2012 |
多年生黑麦草 | F2 | SSR、SNP和CAPS | 838 | 750 | 7 | 2012 |
多年生黑麦草 | F2 | DArT | 1316 | 683 | 7 | 2013 |
多年生黑麦草 | F2 | SNP和PAV | 10325 | 952.6 | 7 | 2016 |
多年生黑麦草 | F2 | SNP和PAV | 28152 | 1051.8 | 7 | 2018 |
意大利黑麦草 | F2 | RFLP和RAPD | 101 | 754 | 13 | 1994 |
意大利黑麦草 | F1 | RFLP、AFLP和TAS | 385 | 1244.4 | 7 | 2004b |
意大利黑麦草 | F1 | SSR | 429 | 887.8/795.8 | 7/7 | 2006 |
多年生黑麦草和意大利黑麦草 | F1 | RFLP和RAPD | 106 | 692 | 7 | 1998 |
多年生黑麦草和意大利黑麦草 | F2 | EST-SSR | 284 | 742 | 7 | 2010 |
意大利黑麦草和毒麦 | BC1 | SSR和CISP | 192 | 488.8 | 7 | 2014 |
表1 黑麦草连锁图谱构建(谢文刚等, 2014; 刘晓强等, 2020, 略加修改)
Table 1 Linkage map construction in Lolium species (modified from Xie et al., 2014; Liu et al., 2020, in Chinese)
黑麦草物种 | 群体类型 | 所用标记 | 标记数 | 图谱长度(cM) | 连锁群 | 参考文献 |
---|---|---|---|---|---|---|
多年生黑麦草 | F1 | AFLP和EST-SSR | 471 | 930 | 7 | 1999 |
多年生黑麦草 | F1 | RFLP、AFLP和EST | 240 | 811 | 7 | 2002a |
多年生黑麦草 | F1 | RFLP、AFLP和SSR | 172 | 814 | 7 | 2002b |
多年生黑麦草 | F1 | EST-RFLP和EST-SSR | 159/125 | 963/757 | 7/7 | 2004 |
多年生黑麦草 | F2 | SSR | 376 | 484.9 | 7 | 2006 |
多年生黑麦草 | F2 | DArT | 326 | 966 | 7 | 2012 |
多年生黑麦草 | F2 | SSR、SNP和CAPS | 838 | 750 | 7 | 2012 |
多年生黑麦草 | F2 | DArT | 1316 | 683 | 7 | 2013 |
多年生黑麦草 | F2 | SNP和PAV | 10325 | 952.6 | 7 | 2016 |
多年生黑麦草 | F2 | SNP和PAV | 28152 | 1051.8 | 7 | 2018 |
意大利黑麦草 | F2 | RFLP和RAPD | 101 | 754 | 13 | 1994 |
意大利黑麦草 | F1 | RFLP、AFLP和TAS | 385 | 1244.4 | 7 | 2004b |
意大利黑麦草 | F1 | SSR | 429 | 887.8/795.8 | 7/7 | 2006 |
多年生黑麦草和意大利黑麦草 | F1 | RFLP和RAPD | 106 | 692 | 7 | 1998 |
多年生黑麦草和意大利黑麦草 | F2 | EST-SSR | 284 | 742 | 7 | 2010 |
意大利黑麦草和毒麦 | BC1 | SSR和CISP | 192 | 488.8 | 7 | 2014 |
黑麦草物种 | 定位性状 | QTL位置 | 所用标记 | 参考文献 |
---|---|---|---|---|
多年生黑麦草 | 抽穗期 | LG2、LG4和LG7 | SSR、AFLP和RFLP | 2004 |
多年生黑麦草 | 抽穗期 | LG2-LG5和LG7 | SSR和CAPS | 2009 |
多年生黑麦草 | 春化反应 | LG2、LG4、LG6和LG7 | SSR、AFLP和CAPS | 2005a |
多年生黑麦草 | 抗冠锈病 | LG2 | AFLP | 2005 |
多年生黑麦草 | 抗秆锈病 | LG1、LG6和LG7 | RAD、AFLP、SSR和EST-SSR | 2013 |
多年生黑麦草 | 冬季生存 | LG2-LG4和LG6 | SNP | 2016 |
多年生黑麦草 | 抗霉粉病 | LG3和LG7 | RGA、SSR和STS | 2008 |
多年生黑麦草 | 抗灰色叶斑病 | LG3和LG6 | RAPD、RFLP、AFLP和SSR | 2005 |
多年生黑麦草 | 叶长 | LG2、LG4和LG7 | RAPD、AFLP、SSR和STS | 2009 |
多年生黑麦草 | 种子产量 | LG1、LG2 | EST-SSR | 2008 |
多年生黑麦草 | 育性 | LG4、LG7 | RFLP、AFLP、STS、CAPS 和SSR | 2008 |
多年生黑麦草 | 开花基因 | LG7 | STS和EST-CAPS | 2005 |
多年生黑麦草 | 开花时间、穗长和小花数 | LG2-LG5和LG7 | SSR和EST-CAPS | 2009 |
多年生黑麦草 | 牧草品质 | LG1-LG5和LG7 | RFLP和SSR | 2005 |
多年生黑麦草 | 草产量 | LG1、LG2、LG4和LG6 | SSR | 2012 |
多年生黑麦草 | 耐涝性 | LG3和LG4 | SSR和SNP | 2011 |
多年生黑麦草 | 极性代谢物 | LG1-LG3和LG7 | SNP和DArT | 2017 |
多年生黑麦草 | 脂肪酸 | LG1-LG5和LG7 | RAD和SSR | 2013 |
意大利黑麦草 | 抗倒伏 | LG1-LG7 | SSR | 2004a |
意大利黑麦草 | 抗枯萎病 | LG5 | EST-CAPS和AFLP | 2005 |
意大利黑麦草 | 抗冠锈病 | LG1和LG2 | AFLP和SSR | 2007 |
意大利黑麦草 | 抗细菌性萎蔫病 | LG1和LG4-LG6 | AFLP和SSR | 2006a |
意大利黑麦草 | 抗灰色叶斑病 | LG3 | AFLP、SSR和SSCP | 2014 |
意大利黑麦草 | 硝态氮含量 | LG1和LG6 | SSR | 2021 |
表2 黑麦草主要农艺性状QTL定位(谢文刚等, 2014; 刘晓强等, 2020, 略加修改)
Table 2 QTL mapping on major important agricultural traits in Lolium species (modified from Xie et al., 2014; Liu et al., 2020, in Chinese)
黑麦草物种 | 定位性状 | QTL位置 | 所用标记 | 参考文献 |
---|---|---|---|---|
多年生黑麦草 | 抽穗期 | LG2、LG4和LG7 | SSR、AFLP和RFLP | 2004 |
多年生黑麦草 | 抽穗期 | LG2-LG5和LG7 | SSR和CAPS | 2009 |
多年生黑麦草 | 春化反应 | LG2、LG4、LG6和LG7 | SSR、AFLP和CAPS | 2005a |
多年生黑麦草 | 抗冠锈病 | LG2 | AFLP | 2005 |
多年生黑麦草 | 抗秆锈病 | LG1、LG6和LG7 | RAD、AFLP、SSR和EST-SSR | 2013 |
多年生黑麦草 | 冬季生存 | LG2-LG4和LG6 | SNP | 2016 |
多年生黑麦草 | 抗霉粉病 | LG3和LG7 | RGA、SSR和STS | 2008 |
多年生黑麦草 | 抗灰色叶斑病 | LG3和LG6 | RAPD、RFLP、AFLP和SSR | 2005 |
多年生黑麦草 | 叶长 | LG2、LG4和LG7 | RAPD、AFLP、SSR和STS | 2009 |
多年生黑麦草 | 种子产量 | LG1、LG2 | EST-SSR | 2008 |
多年生黑麦草 | 育性 | LG4、LG7 | RFLP、AFLP、STS、CAPS 和SSR | 2008 |
多年生黑麦草 | 开花基因 | LG7 | STS和EST-CAPS | 2005 |
多年生黑麦草 | 开花时间、穗长和小花数 | LG2-LG5和LG7 | SSR和EST-CAPS | 2009 |
多年生黑麦草 | 牧草品质 | LG1-LG5和LG7 | RFLP和SSR | 2005 |
多年生黑麦草 | 草产量 | LG1、LG2、LG4和LG6 | SSR | 2012 |
多年生黑麦草 | 耐涝性 | LG3和LG4 | SSR和SNP | 2011 |
多年生黑麦草 | 极性代谢物 | LG1-LG3和LG7 | SNP和DArT | 2017 |
多年生黑麦草 | 脂肪酸 | LG1-LG5和LG7 | RAD和SSR | 2013 |
意大利黑麦草 | 抗倒伏 | LG1-LG7 | SSR | 2004a |
意大利黑麦草 | 抗枯萎病 | LG5 | EST-CAPS和AFLP | 2005 |
意大利黑麦草 | 抗冠锈病 | LG1和LG2 | AFLP和SSR | 2007 |
意大利黑麦草 | 抗细菌性萎蔫病 | LG1和LG4-LG6 | AFLP和SSR | 2006a |
意大利黑麦草 | 抗灰色叶斑病 | LG3 | AFLP、SSR和SSCP | 2014 |
意大利黑麦草 | 硝态氮含量 | LG1和LG6 | SSR | 2021 |
[1] | 刘晓强, 赵海滨, 李新玲, 张延明 (2020). 多年生黑麦草分子标记应用及基因组研究进展. 分子植物育种 18, 473-481. |
[2] | 谢文刚, 刘文献, 张建全, 王彦荣 (2014). 牧草分子遗传连锁图谱及其应用. 草业科学 31, 1147-1159. |
[3] |
Abeynayake SW, Byrne S, Nagy I, Jonavičienė K, Etzerodt TP, Boelt B, Asp T (2015). Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions. BMC Plant Biol 15, 250.
DOI PMID |
[4] |
Alm V, Fang C, Busso CS, Devos KM, Vollan K, Grieg Z, Rognli OA (2003). A linkage map of meadow fescue (Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Theor Appl Genet 108, 25-40.
PMID |
[5] |
Armstead IP, Skøt L, Turner LB, Skøt K, Donnison IS, Humphreys MO, King IP (2005). Identification of perennial ryegrass (Lolium perenne (L.)) and meadow fescue (Festuca pratensis (Huds.)Se1) and barley HvCO1 CONSTANS-like genes through comparative mapping and microsynteny. New Phytol 167, 239-247.
DOI PMID |
[6] |
Armstead IP, Turner LB, Farrell M, Skøt L, Gomez P, Montoya T, Donnison IS, King IP, Humphreys MO (2004). Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theor Appl Genet 108, 822-828.
DOI PMID |
[7] |
Armstead IP, Turner LB, Marshall AH, Humphreys MO, King IP, Thorogood D (2008). Identifying genetic components controlling fertility in the outcrossing grass species perennial ryegrass (Lolium perenne) by quantitative trait loci analysis and comparative genetics. New Phytol 178, 559-571.
DOI PMID |
[8] |
Arojju SK, Barth S, Milbourne D, Conaghan P, Velmurugan J, Hodkinson TR, Byrne SL (2016). Markers associated with heading and aftermath heading in perennial ryegrass full-sib families. BMC Plant Biol 16, 160.
DOI PMID |
[9] | Baldinger L, Baumung R, Zollitsch W, Knaus WF (2011). Italian ryegrass silage in winter feeding of organic dairy cows: forage intake, milk yield and composition. J Sci Food Agric 91, 435-442. |
[10] |
Baldwin JC, Dombrowski JE (2006). Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. Plant Sci 171, 459-469.
DOI PMID |
[11] | Balfourier F, Imbert C, Charmet G (2000). Evidence for phylogeographic structure in Lolium species related to the spread of agriculture in Europe. A cpDNA study. Theor Appl Genet 101, 131-138. |
[12] | Barre P, Moreau L, Mi F, Turner L, Gastal F, Julier B, Ghesquière M (2009). Quantitative trait loci for leaf length in perennial ryegrass (Lolium perenne L.). Grass Forage Sci 64, 310-321. |
[13] | Begheyn RF, Yates SA, Sykes T, Studer B (2018). Genetic loci governing androgenic capacity in perennial ryegrass (Lolium perenne L.).G3 8, 1897-1908. |
[14] | Bennett SJ, Hayward MD, Marshall DF (2000). Morphological differentiation in four species of the genus Lolium. Genet Resour Crop Evol 47, 247-255. |
[15] |
Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F (1999). A high-density molecular map for ryegrass (Lolium perenne) using AFLP markers. Theor Appl Genet 99, 445-452.
DOI PMID |
[16] | Bulinska-Radomska Z, Lester RN (1985). Relationships between five species of Lolium (Poaceae). Plant Syst Evol 148, 169-175. |
[17] | Byrne S, Guiney E, Barth S, Donnison I, Mur LAJ, Milbourne D (2009). Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L. Euphytica 166, 61-70. |
[18] | Byrne SL, Foito A, Hedley PE, Morris JA, Stewart D, Barth S (2011). Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency. Ann Bot 107, 243-254. |
[19] | Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T (2015). A synteny-based draft genome sequence of the forage grass Lolium perenne. Plant J 84, 816-826. |
[20] |
Catalán P, Torrecilla P, Rodrı́guez JAL, Olmstead RG (2004). Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogenet Evol 31, 517-541.
PMID |
[21] |
Charmet G, Balfourier F (1994). Isozyme variation and species relationships in the genus Lolium L. (ryegrasses, Graminaceae). Theor Appl Genet 87, 641-649.
DOI PMID |
[22] | Charmet G, Balfourier F, Chatard V (1996). Taxonomic relationships and interspecific hybridization in the genus Lolium (grasses). Genet Resour Crop Evol 43, 319-327. |
[23] | Charmet G, Ravel C, Balfourier F (1997). Phylogenetic analysis in the Festuca-Lolium complex using molecular markers and ITS rDNA. Theor Appl Genet 94, 1038-1046. |
[24] | Cheng YJ, Ma X, Zhou K, Humphreys MW, Zhang XQ (2016a). Phylogenetic analysis of Festuca-Lolium complex using SRAP markers. Genet Resour Crop Evol 63, 7-18. |
[25] | Cheng YJ, Zhou K, Humphreys MW, Harper JA, Ma X, Zhang XQ, Yan HD, Huang LK (2016b). Phylogenetic relationships in the Festuca-Lolium complex (Loliinae; Poaceae): new insights from chloroplast sequences. Front Ecol Evol 4, 89. |
[26] | Clayton WD, Renvoize SA (1986). Genera Graminum- grasses of the world. Kew Bull Add Ser 2, 1-196. |
[27] |
Cogan NOI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC, Forster JW (2006). Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 276, 101-112.
PMID |
[28] |
Cogan NOI, Smith KF, Yamada T, Francki MG, Vecchies AC, Jones ES, Spangenberg GC, Forster JW (2005). QTL analysis and comparative genomics of herbage quality traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110, 364-380.
PMID |
[29] | Copetti D, Kuon JE, Yates S, Kölliker R, Studer B (2019). Characterization of a Lolium multiflorum diploid assembly. In: Proceedings of the Plant and Animal Genome XXVII Conference. San Diego: ETH. pp.W591. |
[30] |
Copetti D, Yates SA, Vogt MM, Russo G, Grieder C, Kölliker R, Studer B (2021). Evidence for high intergenic sequence variation in heterozygous Italian ryegrass (Lolium multiflorum Lam.) genome revealed by a high-quality draft diploid genome assembly. BioRxiv doi: 10.1101/2021.05.05.442707.
DOI URL |
[31] | Cropano C, Manzanares C, Yates S, Copetti D, Do Canto J, Lübberstedt T, Koch M, Studer B (2021). Identification of candidate genes for self-compatibility in perennial ryegrass (Lolium perenne L.). Front Plant Sci 12, 707901. |
[32] |
Curley J, Sim SC, Warnke S, Leong S, Barker R, Jung G (2005). QTL mapping of resistance to gray leaf spot in ryegrass. Theor Appl Genet 111, 1107-1117.
PMID |
[33] | Dombrowski JE, Baldwin JC, Martin RC (2008). Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol 165, 651-661. |
[34] | Easton HS (2007). Grasses and Neotyphodium endophytes: co-adaptation and adaptive breeding. Euphytica 154, 295-306. |
[35] |
Evans LT, King RW, Chu A, Mander LN, Pharis RP (1990). Gibberellin structure and florigenic activity in Lolium temulentum, a long-day plant. Planta 182, 97-106.
DOI PMID |
[36] | Farrell JD, Byrne S, Paina C, Asp T (2014). De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy. PLoS One 9, e103567. |
[37] | Faville MJ, Jahufer MZZ, Hume DE, Cooper BM, Pennell CGL, Ryan DL, Easton HS (2012). Quantitative trait locus mapping of genomic regions controlling herbage yield in perennial ryegrass. New Zeal J Agric Res 55, 263-281. |
[38] |
Faville MJ, Vecchies AC, Schreiber M, Drayton MC, Hughes LJ, Jones ES, Guthridge KM, Smith KF, Sawbridge T, Spangenberg GC, Bryan GT, Forster JW (2004). Functionally associated molecular genetic marker map construction in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 110, 12-32.
PMID |
[39] | Foito A, Hackett CA, Stewart D, Velmurugan J, Milbourne D, Byrne SL, Barth S (2017). Quantitative trait loci associated with different polar metabolites in perennial ryegrass-providing scope for breeding towards increasing certain polar metabolites. BMC Genet 18, 84. |
[40] | Frei D, Veekman E, Grogg D, Stoffel-Studer I, Morishima A, Shimizu-Inatsugi R, Yates S, Shimizu KK, Frey JE, Studer B, Copetti D (2021). Ultralong Oxford Nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. Genome Biol Evol 13, evab159. |
[41] | Fu ZY, Song JC, Zhao JQ, Jameson PE (2019). Identification and expression of genes associated with the abscission layer controlling seed shattering in Lolium perenne. AoB Plants 11, ply076. |
[42] | Gaut BS, Tredway LP, Kubik C, Gaut RL, Meyer W (2000). Phylogenetic relationships and genetic diversity among members of the Festuca-Lolium complex (Poaceae) based on ITS sequence data. Plant Syst Evol 224, 33-53. |
[43] |
Gill GP, Wilcox PL, Whittaker DJ, Winz RA, Bickerstaff P, Echt CE, Kent J, Humphreys MO, Elborough KM, Gardner RC (2006). A framework linkage map of perennial ryegrass based on SSR markers. Genome 49, 354-364.
PMID |
[44] | Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001). Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Phy- siol 125, 1788-1801. |
[45] |
Gocal GFW, Poole AT, Gubler F, Watts RJ, Blundell C, King RW (1999). Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol 119, 1271-1278.
PMID |
[46] |
Grattapaglia D, Sederoff R (1994). Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137, 1121-1137.
DOI PMID |
[47] | Guan XL, Hirata M, Ding CL, Xu NX, Yuyama N, Tan LB, Fu YC, Wang JP, Cai HW (2014). Genetic linkage map of Lolium multiflorum Lam. constructed from a BC1 population derived from an interspecific hybridization, L. multiflorum × Lolium temulentum L. × L. temulentum. Grassl Sci 60, 142-149. |
[48] | Guan XL, Yuyama N, Stewart A, Ding CL, Xu NX, Kiyoshi T, Cai HW (2017). Genetic diversity and structure of Lolium species surveyed on nuclear simple sequence repeat and cytoplasmic markers. Front Plant Sci 8, 584. |
[49] | Hand ML, Cogan NO, Stewart AV, Forster JW (2010). Evolutionary history of tall fescue morphotypes inferred from molecular phylogenetics of the Lolium-Festuca species complex. BMC Evol Biol 10, 303. |
[50] | Hayward MD, Forster JW, Jones JG, Dolstra O, Evans C, McAdam NJ, Hossain KG, Stammers M, Will J, Humphreys MO, Evans GM (1998). Genetic analysis of Lolium. I. Identification of linkage groups and the establishment of a genetic map. Plant Breed 117, 451-455. |
[51] | Hayward MD, Mcadam NJ, Jones JG, Evans C, Evans GM, Forster JW, Ustin A, Hossain KG, Quader B, Stammers M, Will JK (1994). Genetic markers and the selection of quantitative traits in forage grasses. Euphytica 77, 269-275. |
[52] | Hegarty M, Yadav R, Lee M, Armstead I, Sanderson R, Scollan N, Powell W, Skøt L (2013). Genotyping by RAD sequencing enables mapping of fatty acid composition traits in perennial ryegrass (Lolium perenne (L.)). Plant Biotechnol J 11, 572-581. |
[53] | Hirata M, Cai HW, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006). Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113, 270-279. |
[54] | Hirata M, Kiyoshi K, Yuyama N, Cai HW (2011). Development of simple sequence repeat markers for inbreeding Lolium species. Grassl Sci 57, 35-45. |
[55] | Hu ZY, Zhang YF, He Y, Cao QQ, Zhang T, Lou LQ, Cai QS (2020). Full-length transcriptome assembly of Italian ryegrass root integrated with RNA-Seq to identify genes in response to plant cadmium stress. Int J Mol Sci 21, 1067. |
[56] | Inoue M, Gao ZS, Cai HW (2004a). QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 109, 1576-1585. |
[57] | Inoue M, Gao ZS, Hirata M, Fujimori M, Cai HW (2004b). Construction of a high-density linkage map of Italian ryegrass (Lolium multiflorum Lam.) using restriction fragment length polymorphism, amplified fragment length polymorphism, and telomeric repeat associated sequence markers. Genome 47, 57-65. |
[58] | Jaškūnė K, Aleliūnas A, Statkevičiūtė G, Kemešytė V, Studer B, Yates S (2020). Genome-wide association study to identify candidate loci for biomass formation under water deficit in perennial ryegrass. Front Plant Sci 11, 570204. |
[59] | Jensen LB, Andersen JR, Frei U, Xing YZ, Taylor C, Holm PB, Lübberstedt TL (2005a). QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theor Appl Genet 110, 527-536. |
[60] | Jensen LB, Muylle H, Arens P, Andersen CH, Holm PB, Ghesquiere M, Julier B, Lübberstedt T, Nielsen KK, de Riek J, Roldán-Ruiz I, Roulund N, Taylor C, Vosman B, Barre P (2005b). Development and mapping of a public reference set of SSR markers in Lolium perenne L. Mol Ecol Notes 5, 951-957. |
[61] | Jones E, Dupal M, Dumsday J, Hughes L, Forster J (2002a). An SSR-based genetic linkage map for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 105, 577-584. |
[62] | Jones ES, Dupal MP, Kölliker R, Drayton MC, Forster JW (2001). Development and characterisation of simple sequence repeat (SSR) markers for perennial ryegrass (Lolium perenne L.). Theor Appl Genet 102, 405-415. |
[63] | Jones ES, Mahoney NL, Hayward MD, Armstead IP, Jones JG, Humphreys MO, King IP, Kishida T, Yamada T, Balfourier F, Charmet G, Forster JW (2002b). An enhanced molecular marker based genetic map of perennial ryegrass (Lolium perenne) reveals comparative relationships with other Poaceae genomes. Genome 45, 282-295. |
[64] | King J, Thomas A, James C, King I, Armstead I (2013). A DArT marker genetic map of perennial ryegrass (Lolium perenne L.) integrated with detailed comparative mapping information; comparison with existing DArT marker genetic maps of Lolium perenne, L. multiflorum and Festuca pratensis. BMC Genomics 14, 437. |
[65] | King J, Thorogood D, Edwards KJ, Armstead IP, Roberts L, Skøt K, Hanley Z, King IP (2008a). Development of a genomic microsatellite library in perennial ryegrass (Lolium perenne) and its use in trait mapping. Ann Bot 101, 845-853. |
[66] | King RW, Mander LN, Asp T, MacMillan CP, Blundell CA, Evans LT (2008b). Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol Plant 1, 295-307. |
[67] |
King RW, Moritz T, Evans LT, Junttila O, Herlt AJ (2001). Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol 127, 624-632.
PMID |
[68] | Knorst V, Yates S, Byrne S, Asp T, Widmer F, Studer B, Kölliker R (2019). First assembly of the gene-space of Lolium multiflorum and comparison to other Poaceae genomes. Grassl Sci 65, 125-134. |
[69] |
Kopecký D, Bartoš J, Lukaszewski AJ, Baird JH, Černoch V, Kölliker R, Rognli OA, Blois H, Caig V, Lübberstedt T, Studer B, Shaw P, Doležel J, Kilian A (2009). Development and mapping of DArT markers within the Festuca-Lolium complex. BMC Genomics 10, 473.
DOI PMID |
[70] |
Korte A, Farlow A (2013). The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29.
DOI PMID |
[71] | Kubik C, Meyer WA, Gaut BS (1999). Assesing the abundance and polymorphism of simple sequence repeats in perennial ryegrass. Crop Sci 39, 1136-1141. |
[72] |
Li W, Katin-Grazzini L, Gu XB, Wang XJ, El-Tanbouly R, Yer H, Thammina C, Inguagiato J, Guillard K, McAvoy RJ, Wegrzyn J, Gu TT, Li Y (2017). Transcriptome analysis reveals differential gene expression and a possible role of gibberellins in a shade-tolerant mutant of perennial ryegrass. Front Plant Sci 8, 868.
DOI PMID |
[73] | Loos BP (1993). Morphological variation in Lolium (Poaceae) as a measure of species relationships. Plant Syst Evol 188, 87-99. |
[74] | Maity A, Singh V, Martins MB, Ferreira PJ, Smith GR, Bagavathiannan M (2021). Species identification and morphological trait diversity assessment in ryegrass (Lolium spp.) populations from the Texas Blackland Prairies. Weed Sci 69, 379-392. |
[75] |
Manzanares C, Barth S, Thorogood D, Byrne SL, Yates S, Czaban A, Asp T, Yang BC, Studer B (2016). A gene encoding a DUF247 domain protein cosegregates with the S self-incompatibility locus in perennial ryegrass. Mol Biol Evol 33, 870-884.
DOI PMID |
[76] | Miura Y, Ding CL, Ozaki R, Hirata M, Fujimori M, Takahashi W, Cai HW, Mizuno K (2005). Development of EST-derived CAPS and AFLP markers linked to a gene for resistance to ryegrass blast (Pyricularia sp.) in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 111, 811-818. |
[77] | Moon CD, Scott B, Schardl CL, Christensen MJ (2000). The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 92, 1103-1118. |
[78] | Muylle H, Baert J, van Bockstaele E, Moerkerke B, Goetghebeur E, Roldán-Ruiz I (2005). Identification of molecular markers linked with crown rust (Puccinia coronata f. sp. lolii) resistance in perennial ryegrass (Lolium perenne) using AFLP markers and a bulked segregant approach. Euphytica 14, 135-144. |
[79] | Paina C, Byrne SL, Studer B, Rognli OA, Asp T (2016). Using a candidate gene-based genetic linkage map to identify QTL for winter survival in perennial ryegrass. PLoS One 11, e0152004. |
[80] | Pearson A, Cogan NOI, Baillie RC, Hand ML, Bandaranayake CK, Erb S, Wang JP, Kearney GA, Gendall AR, Smith KF, Forster JW (2011). Identification of QTLs for morphological traits influencing waterlogging tolerance in perennial ryegrass (Lolium perenne L.). Theor Appl Ge- net 122, 609-622. |
[81] | Pfender WF, Slabaugh ME (2013). Pathotype-specific QTL for stem rust resistance in Lolium perenne. Theor Appl Ge- net 126, 1213-1225. |
[82] | Ponting RC, Drayton MC, Cogan NOI, Dobrowolski MP, Spangenberg GC, Smith KF, Forster JW (2007). SNP discovery, validation, haplotype structure and linkage disequilibrium in full-length herbage nutritive quality genes of perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 278, 585-597. |
[83] | Saha MC, Mian R, Zwonitzer JC, Chekhovskiy K, Hopkins AA (2005). An SSR- and AFLP-based genetic linkage map of tall fescue (Festuca arundinacea Schreb.). Theor Appl Genet 110, 323-336. |
[84] |
Schardl CL, Leuchtmann A, Spiering MJ (2004). Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55, 315-340.
PMID |
[85] | Schejbel B, Jensen LB, Asp T, Xing Y, Lübberstedt T (2008). Mapping of QTL for resistance to powdery mildew and resistance gene analogues in perennial ryegrass. Plant Breed 127, 368-375. |
[86] | Scholz H, Stierstorfer CH, Gaisberg MV (2000). Lolium edwardii sp. nova (Gramineae) and its relationship with Schedonorus sect. Plantynia Dumort. Feddes Repert 111, 561-565. |
[87] | Senda T, Hiraoka Y, Tominaga T (2006). Inheritance of seed shattering in Lolium temulentum and L. persicum hybrids. Genet Resour Crop Evol 53, 449-451. |
[88] | Senda T, Kubo N, Hirai M, Tominaga T (2004). Development of microsatellite markers and their effectiveness in Lolium temulentum. Weed Res 44, 136-141. |
[89] |
Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW (2010). Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). Plant Mol Biol 72, 343-355.
DOI PMID |
[90] | Slatter LM, Barth S, Manzanares C, Velmurugan J, Place I, Thorogood D (2021). A new genetic locus for self- compatibility in the outcrossing grass species perennial ryegrass (Lolium perenne). Ann Bot 127, 715-722. |
[91] |
Studer B, Boller B, Bauer E, Posselt UK, Widmer F, Kölliker R (2007). Consistent detection of QTLs for crown rust resistance in Italian ryegrass (Lolium multiflorum Lam.) across environments and phenotyping methods. Theor Appl Genet 115, 9-17.
DOI PMID |
[92] | Studer B, Boller B, Herrmann D, Bauer E, Posselt UK, Widmer F, Kölliker R (2006a). Genetic mapping reveals a single major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113, 661-671. |
[93] |
Studer B, Byrne S, Nielsen RO, Panitz F, Bendixen C, Islam S, Pfeifer M, Lübberstedt T, Asp T (2012). A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics 13, 140.
DOI PMID |
[94] |
Studer B, Jensen LB, Hentrup S, Brazauskas G, Kölliker R, Lübberstedt T (2008). Genetic characterisation of seed yield and fertility traits in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117, 781-791.
DOI PMID |
[95] |
Studer B, Kölliker R, Muylle H, Asp T, Frei U, Roldán- Ruiz I, Barre P, Tomaszewski C, Meally H, Barth S, Skøt L, Armstead IP, Dolstra O, Lübberstedt T (2010). EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.). BMC Plant Biol 10, 177.
DOI PMID |
[96] | Studer B, Widmer F, Enkerli J, Kölliker R (2006b). Development of novel microsatellite markers for the grassland species Lolium multiflorum, Lolium perenne and Festuca pratensis. Mol Ecol Notes 6, 1108-1110. |
[97] |
Takahashi W, Miura Y, Sasaki T, Takamizo T (2014). Identification of a novel major locus for gray leaf spot resistance in Italian ryegrass (Lolium multiflorum Lam.). BMC Plant Biol 14, 303.
DOI PMID |
[98] |
Tan WQ, Zhang D, Yuyama N, Chen J, Sugita S, Kawachi T, Cai HW (2021). Quantitative trait loci analysis of nitrate-nitrogen content in Italian ryegrass (Lolium multiflorum Lam.). Euphytica 217, 15.
DOI URL |
[99] | Terrell EE (1968). A Taxonomic Revision of the Genus Lolium. United States Department of Agriculture. pp. 1-65. |
[100] |
Tomaszewski C, Byrne SL, Foito A, Kildea S, Kopecký D, Doležel J, Heslop-Harrison JS, Stewart D, Barth S (2012). Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers. Plant Breed 131, 345-349.
DOI URL |
[101] |
Tubbs TB, Chastain TG (2022). Genetic variation for seed retention in accessions and genotypic lines of perennial ryegrass (Lolium perenne L). Crop Sci doi: 10.1002/csc2. 20837.
DOI URL |
[102] | Tzvelev NN (1989). The system of grasses (Poaceae) and their evolution. Bot Rev 55, 141-203. |
[103] |
Velmurugan J, Milbourne D, Connolly V, Heslop-Harrison JS, Anhalt UCM, Lynch MB, Barth S (2018). An immortalized genetic mapping population for perennial ryegrass: a resource for phenotyping and complex trait mapping. Front Plant Sci 9, 717.
DOI PMID |
[104] | Velmurugan J, Mollison E, Barth S, Marshall D, Milne L, Creevey CJ, Lynch B, Meally H, McCabe M, Milbourne D (2016). An ultra-high density genetic linkage map of perennial ryegrass (Lolium perenne) using genotyping by sequencing (GBS) based on a reference shotgun genome assembly. Ann Bot 118, 71-87. |
[105] | Wang JG, Zhao JC, Feng S, Zhang JZ, Gong SF, Qiao K, Zhou AM (2020). Comparison of cadmium uptake and transcriptional responses in roots reveal key transcripts from high and low-cadmium tolerance ryegrass cultivars. Ecotoxicol Environ Saf 203, 110961. |
[106] |
Wang KH, Liu YR, Tian JL, Huang KY, Shi TR, Dai XX, Zhang WJ (2017). Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Front Plant Sci 8, 1032.
DOI PMID |
[107] |
Warnke SE, Barker RE, Jung G, Sim SC, Mian MAR, Saha MC, Brilman LA, Dupal MP, Forster JW (2004). Genetic linkage mapping of an annual × perennial ryegrass population. Theor Appl Genet 109, 294-304.
PMID |
[108] | Wichmann F, Asp T, Widmer F, Kölliker R (2011). Transcriptional responses of Italian ryegrass during interaction with Xanthomonas translucens pv. graminis reveal novel candidate genes for bacterial wilt resistance. Theor Appl Genet 122, 567-579. |
[109] | Xu B, Li H, Li Y, Yu GH, Zhang J, Huang BR (2018). Characterization and transcriptional regulation of chlorophyll b reductase gene NON-YELLOW COLORING 1associated with leaf senescence in perennial ryegrass (Lolium perenne L.). Environ Exp Bot 149, 43-50. |
[110] |
Xu WW, Sleper DA, Chao S (1995). Genome mapping of polyploid tall fescue (Festuca arundinacea Schreb.) with RFLP markers. Theor Appl Genet 91, 947-955.
DOI PMID |
[111] | Yu GH, Xie ZN, Chen W, Xu B, Huang BR (2022a). Knock down of NON-YELLOW COLOURING 1-like gene or chlo- rophyllin application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf se- nescence in perennial ryegrass. J Exp Bot 73, 429-444. |
[112] | Yu GH, Xie ZN, Lei SS, Li H, Xu B, Huang BR (2022b). The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. Plant Physiol 189, 595-610. |
[113] | Yu GH, Xie ZN, Zhang J, Lei SS, Lin WJ, Xu B, Huang BR (2021). NOL-mediated functional stay-green traits in perennial ryegrass (Lolium perenne L.) involving multifaceted molecular factors and metabolic pathways regulating leaf senescence. Plant J 106, 1219-1232. |
[114] | Yu JM, Buckler ES (2006). Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17, 155-160. |
[115] |
Yu XQ, Bai GH, Liu SW, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu JM, Jiang YW (2013). Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64, 1537-1551.
DOI PMID |
[116] |
Zhang J, Li H, Jiang YW, Li HB, Zhang ZP, Xu ZP, Xu B, Huang BR (2020). Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biol 20, 520.
DOI PMID |
[117] |
Zhang J, Yu GH, Wen WW, Ma XQ, Xu B, Huang BR (2016). Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. J Exp Bot 67, 935-945.
DOI PMID |
[1] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[2] | 董劭琼, 侯东杰, 曲孝云, 郭柯. 柴达木盆地植物群落样方数据集[J]. 植物生态学报, 2024, 48(4): 534-540. |
[3] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[4] | 左毅, 刘红兵, 杨志刚, 李彬, 向浩鑫, 朱纯真, 王雷. 基于全基因组关联分析筛选山桐子性别分子标记[J]. 植物学报, 2024, 59(3): 414-421. |
[5] | 胡丹玲, 孙永伟. 病毒介导的植物基因组编辑技术研究进展[J]. 植物学报, 2024, 59(3): 452-462. |
[6] | 段政勇, 丁敏, 王宇卓, 丁艺冰, 陈凌, 王瑞云, 乔治军. 糜子SBP基因家族全基因组鉴定及表达分析[J]. 植物学报, 2024, 59(2): 231-244. |
[7] | 杨智, 杨永. 重要林木樟科植物全基因组测序研究进展[J]. 植物学报, 2024, 59(2): 302-318. |
[8] | 张楚然, 李生发, 李逢昌, 唐志忠, 刘辉燕, 王丽红, 顾荣, 邓云, 张志明, 林露湘. 云南鸡足山亚热带半湿润常绿阔叶林20 ha动态监测样地木本植物生境关联与群落数量分类[J]. 生物多样性, 2024, 32(1): 23393-. |
[9] | 刘寅笃, 脱军康, 李成举, 张锋, 张春利, 张莹, 王云姣, 范又方, 姚攀锋, 孙超, 刘玉汇, 刘震, 毕真真, 白江平. 耐低钾马铃薯品种的筛选与评价[J]. 植物学报, 2024, 59(1): 75-88. |
[10] | 韩赟, 迟晓峰, 余静雅, 丁旭洁, 陈世龙, 张发起. 青海野生维管植物名录[J]. 生物多样性, 2023, 31(9): 23280-. |
[11] | 杜红. “物种”与“个体”: 究竟谁是生物多样性保护的恰当对象?[J]. 生物多样性, 2023, 31(8): 23140-. |
[12] | 于熙婷, 黄学辉. 现代玉米起源新见解——两类大刍草的混血[J]. 植物学报, 2023, 58(6): 857-860. |
[13] | 王文静, 朱钰, 张洪铭, 韦陆丹, 易庆平, 余晓敏, 刘雨菡, 张莉雪, 程文翰, 何燕红. 万寿菊舌状花花冠裂片突变体的形态鉴定及连锁标记开发[J]. 植物学报, 2023, 58(6): 893-904. |
[14] | 韦毅刚, 温放, 辛子兵, 符龙飞. 广西野生维管植物名录[J]. 生物多样性, 2023, 31(6): 23078-. |
[15] | 景昭阳, 程可光, 舒恒, 马永鹏, 刘平丽. 全基因组重测序方法在濒危植物保护中的应用[J]. 生物多样性, 2023, 31(5): 22679-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||