Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (3): 285-287.doi: 10.11983/CBB19060

• COMMENTARIES •     Next Articles

NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice

Wang Xiaolin,Wang Ertao()   

  1. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2019-03-31 Accepted:2019-04-02 Online:2019-05-20 Published:2019-05-01
  • Contact: Wang Ertao


Root-associated microbial communities in the soil play fundamental roles in plant nutrition uptake and fitness. However, how plants shape root microbial communities and how the microbes affect the fitness of their hosts remain elusive. Recently, Chinese scientists have made a breakthrough discovery that the nitrogen-use efficiency between indica and japonica rice varieties is associated with different root microbiota in rice. Nitrogen metabolism is greatly enriched in indica-enriched bacteria as compared with japonica-enriched bacteria. Rice NRT1.1B, a nitrogen sensor contributing to nitrogen use divergence between rice subspecies, is associated with the recruitment of these bacterial taxa. Inoculation of the japonica variety with indica-enriched bacteria can improve rice growth in organic nitrogen conditions in the SynCom experimental system. This work highlights the links between root microbiota and nitrogen use in rice and could be exploited to modulate the root microbiota that increase crop productivity and sustainability.

Key words: rice, NRT1.1B, root microbiota, nitrogen use

Figure 1

Rice plants coordinate root microbiota to utilize soil nitrogen by NRT1.1B Indica and japonica rice varieties recruit distinct root microb- iota. The biological progresses related to nitrogen metabolism are specifically enriched in indica-enriched bacteria. These bacteria transform organic nitrogen to ammonium, facilitating the nitrogen utilization in rice. NRT1.1B is associated with the recruitments of indica and japonica-specific bacterial taxa."

[1] Beckers B, Op De Beeck M, Weyens N, Van Acker R, Van Montagu M, Boerjan W, Vangronsveld J ( 2016). Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome. Proc Natl Acad Sci USA 113, 2312-2317.
doi: 10.1073/pnas.1523264113 pmid: 26755604
[2] Bender SF, Wagg C, van der Heijden MGA ( 2016). An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31, 440-452.
doi: 10.1016/j.tree.2016.02.016 pmid: 26993667
[3] Berendsen RL, Pieterse CM, Bakker PA ( 2012). The rhizosphere microbiome and plant health. Trends Plant Sci 17, 478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542
[4] Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P ( 2012). Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91-95.
doi: 10.1038/nature11336 pmid: 22859207
[5] Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P ( 2013). Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64, 807-838.
doi: 10.1146/annurev-arplant-050312-120106 pmid: 23373698
[6] Chaparro JM, Sheflin AM, Manter DK, Vivanco JM ( 2012). Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils 48, 489-499.
doi: 10.1007/s00374-012-0691-4
[7] Duan L, Liu HB, Li XH, Xiao JH, Wang SP ( 2014). Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol Plant 152, 486-500.
doi: 10.1111/ppl.12192 pmid: 24684436
[8] Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V ( 2015). Structure, variation, and assembly of the root- associated microbiomes of rice. Proc Natl Acad Sci USA 112, E911-E920.
doi: 10.1073/pnas.1414592112 pmid: 25605935
[9] Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC ( 2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47, 834-838.
doi: 10.1038/ng.3337 pmid: 26053497
[10] Mbodj D, Effa-Effa B, Kane A, Manneh B, Gantet P, Laplaze L, Diedhiou AG, Grondin A ( 2018). Arbuscular mycorrhizal symbiosis in rice: establishment, environmental control and impact on plant growth and resistance to abiotic stresses. Rhizosphere 8, 12-26.
doi: 10.1016/j.rhisph.2018.08.003
[11] Oldroyd GED, Murray JD, Poole PS, Downie JA ( 2011). The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45, 119-144.
doi: 10.1146/annurev-genet-110410-132549 pmid: 21838550
[12] Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT ( 2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112, E5013-E5020.
doi: 10.1073/pnas.1505765112 pmid: 26305938
[13] Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET ( 2018). Core microbiomes for sustainable agroecosystems. Nat Plants 4, 247-257.
doi: 10.1038/s41477-018-0139-4
[14] Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, Gonzalez-Pena A, Peiffer J, Koren O, Shi Q, Knight R, Glavina del Rio T, Tringe SG, Buckler ES, Dangl JL, Ley RE ( 2018). Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci USA 115, 7368-7373.
doi: 10.1073/pnas.1800918115
[15] Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan GY, Yuan L, Garrido-Oter R, Chu C, Bai Y ( 2019). NRT1.1B contributes the association of root microbiota and nitrogen use in rice. Nat Biotechnol doi:
[1] yuchun Rao. Research Progress on Rice Root Genetics and Breeding [J]. Chin Bull Bot, 2020, 55(3): 0-0.
[2] Zhang Lu,He Xinhua. Nitrogen Utilization Mechanism in C3 and C4 Plants [J]. Chin Bull Bot, 2020, 55(2): 228-239.
[3] Han Mei-ling, Tan Ru-jiao, Chao Dai-yin. A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 5-8.
[4] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands [J]. Chin J Plant Ecol, 2019, 43(7): 566-575.
[5] Zhang Tong,Guo Yalu,Chen Yue,Ma Jinjiao,Lan Jinping,Yan Gaowei,Liu Yuqing,Xu Shan,Li Liyun,Liu Guozhen,Dou Shijuan. Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress [J]. Chin Bull Bot, 2019, 54(6): 711-722.
[6] Zhang Shuo, Wu Changyin. Long Noncoding RNA Ef-cd Promotes Maturity Without Yield Penalty in Rice [J]. Chin Bull Bot, 2019, 54(5): 550-553.
[7] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[8] Tian Huaidong, Li Jing, Tian Baohua, Niu Pengfei, Li Zhen, Yue Zhongxiao, Qu Yajuan, Jiang Jianfang, Wang Guangyuan, Cen Huihui, Li Nan, Yan Feng. Method for N-methyl-N-nitrosourea Mutagenesis on Hermaphroditic Germ Cells of Rice [J]. Chin Bull Bot, 2019, 54(5): 625-633.
[9] Zhou Chun, Jiao Ran, Hu Ping, Lin Han, Hu Juan, Xu Na, Wu Xianmei, Rao Yuchun, Wang Yuexing. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chin Bull Bot, 2019, 54(5): 606-619.
[10] Liu Jin, Yao Xiaoyun, Yu Liqin, Li Hui, Zhou Huiying, Wang Jiayu, Li Maomao. Detection and Analysis of Dynamic Quantitative Trait Loci at Three Years for Seed Storability in Rice (Oryza sativa) [J]. Chin Bull Bot, 2019, 54(4): 464-473.
[11] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[12] Cheng Xinjie, Yu Hengxiu, Cheng Zhukuan. Protocols for Analyzing Rice Meiotic Chromosomes [J]. Chin Bull Bot, 2019, 54(4): 503-508.
[13] Yang Dewei,Wang Mo,Han Libo,Tang Dingzhong,Li Shengping. Progress of Cloning and Breeding Application of Blast Resistance Genes in Rice and Avirulence Genes in Blast Fungi [J]. Chin Bull Bot, 2019, 54(2): 265-276.
[14] Chen Lin,Lin Yan,Chen Pengfei,Wang Shaohua,Ding Yanfeng. Effect of Iron Deficiency on the Protein Profile of Rice (Oryza sativa) Phloem Sap [J]. Chin Bull Bot, 2019, 54(2): 194-207.
[15] Ye Wenlan,Ma Guolan,Yuan liyanan,Zheng Shiyi,Cheng Linqiao,Fang Yuan,Rao Yuchun. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice [J]. Chin Bull Bot, 2019, 54(2): 277-283.
Full text



[1] Hu Shi-yi. Lipoid Bodies in Plant Tissues[J]. Chin Bull Bot, 1994, 11(04): 49 -51 .
[2] CHENG Hong-Yan. Introduction of State Key Laboratory of Biomembrane and Membrane Biotechnology[J]. Chin Bull Bot, 1998, 15(04): 78 .
[3] Liu Dong-zhuo and Li Lan. The Karyotype Analysis of Solanum pseudocapsicum[J]. Chin Bull Bot, 1992, 9(03): 50 .
[4] WANG Bao-Shan;LI De-Quan;ZHAO Shi-Jie;MENG Qing-Wei and ZOU Qi. Effects of Iso-osmotic NaCl and KCl Stress on Growth and Gas Exchange of Sorghum Seedlings[J]. Chin Bull Bot, 1999, 16(04): 449 -453 .
[5] LI Yao-Dong WEI Yu-Ning XU Ben-Mei. Study on the ABA Content and SOD Activity in Ancient Lotus and Modern Lotus Seeds[J]. Chin Bull Bot, 2000, 17(05): 439 -442 .
[6] LI Zhong-Kui HU Hong-Jun LI Ye-Guang. Advances in Molecular Phylogenetic Relationship of Volvocales[J]. Chin Bull Bot, 2002, 19(04): 419 -424 .
[7] WANG Ting SU Ying-Juan ZHU Jian-Ming HUANG Chao LI Xue-Yan. PCR_RFLP Analysis of rbc L Genes in Taxaceae and Related Taxa[J]. Chin Bull Bot, 2001, 18(06): 714 -721 .
[8] . [J]. Chin Bull Bot, 1994, 11(专辑): 51 .
[9] Dong Shu-ting, Hu Chang-hao, Yue Shou-song, Wang Qun-ying, Gao Rong-qi, Pan Zi-long. The Characteristics of Canopy Photosynthesis of Summer Corn (Zea mays) and its Relation with Canopy Structure and Ecological Conditions[J]. Chin J Plan Ecolo, 1992, 16(4): 372 -378 .