Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (3): 385-395.doi: 10.11983/CBB18151

• SPECIAL TOPICS • Previous Articles     Next Articles

Recent Progress in Evolutionary Technology of CRISPR/Cas9 System for Plant Genome Editing

Su Yuekai,Qiu Jingren,Zhang Han,Song Zhenqiao,Wang Jianhua()   

  1. College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
  • Received:2018-07-02 Accepted:2018-08-09 Online:2019-11-24 Published:2019-05-01
  • Contact: Wang Jianhua


CRISPR/Cas9 genome editing is used for precisely modifying the genome, enabling nucleotide insertion, deletion, or DNA fragment replacement in targeted gene(s). With more understanding of the CRISPR/Cas9 system, this technology has been widely applied in research, agriculture, medical treatment and other fields. This article briefly introduces the discovery and working principle of the CRISPR/Cas9 genome-editing technology, and summarizes the research progress in optimizing and improving the technology in recent years, including improving the gene editing efficiency, the range expansion of gene editing, base editing and multigene editing, the safety enhancement of genome editing, replacing gene fragments and transcriptional regulation of targeted genes, to provide references for thorough research work in this area.

Key words: CRISPR/Cas9, genome editing, genetic improvement, plant genomes

Figure 1

The schematic diagram of CRISPR/Cas9 genome editing (Jiang and Doudna, 2017)The Cas9 protein from Streptococcus pyogenes (SpCas9) and associated guide RNA (sgRNA), containing a 20 nt recognition sequence, will cleave a target sequence located upstream of the protospacer adjacent motif (PAM) region, resulting in double-strand break (DSB). Ultimately use the repair in the organism to achieve genome editing."

[1] 李红, 谢卡斌 ( 2017). 植物CRISPR基因组编辑技术的新进展. 生物工程学报 33, 1700-1711.
doi: 10.13345/j.cjb.170171
[2] 冉毅东, 梁振, 张毅, 高彩霞 ( 2017). 植物基因组编辑试剂材料的导入及转化系统的研究现状及前景. 中国科学: 生命科学 47, 1159-1176.
[3] 王影, 李相敢, 邱丽娟 ( 2018). CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展. 植物学报 53, 528-541.
doi: 10.11983/CBB18004
[4] Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart Jr CN ( 2016). Advancing crop transformation in the era of genome editing. Plant Cell 28, 1510-1520.
doi: 10.1105/tpc.16.00196 pmid: 27335450
[5] Aman R, Ali Z, Butt H, Mahas A, Aljedaani F, Khan MZ, Ding S, Mahfouz M ( 2018). RNA virus interference via CRISPR/Cas13a system in plants. Genome Biol 19, 1.
doi: 10.1186/s13059-017-1381-1
[6] Baazim H ( 2014). RNA-guided transcriptional regulation in plants via dCas9 chimeric proteins. Ph.D. thesis. Thuwal, Kingdom of Saudi Arabia: King Abdullah University of Science and Technology. pp. 32-48.
[7] Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P ( 2007). Crispr provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712.
doi: 10.1126/science.1138140 pmid: 17379808
[8] Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J ( 2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960-964.
doi: 10.1126/science.1159689
[9] Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW ( 2004). Gene targeting in stem cells from individuals with Osteogenesis imperfecta. Science 303, 1198-1201.
[10] Cheng AW, Jillette N, Lee P, Plaskon D, Fujiwara Y, Wang W, Taghbalout A, Wang H ( 2016). Casilio: a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labelling. Cell Res 26, 254-257.
doi: 10.1038/cr.2016.3 pmid: 4746610
[11] Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F ( 2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
doi: 10.1007/978-1-4939-1862-1_10 pmid: 23287718
[12] Corrigan-Curay J, O’Reilly M, Kohn DB, Cannon PM, Bao G, Bushman FD, Carroll D, Cathomen T, Joung JK, Roth D, Sadelain M, Scharenberg AM, VON Kalle C, Zhang F, Jambou R, Rosenthal E, Hassani M, Singh A, Porteus MH ( 2015). Genome editing technologies: defining a path to clinic: genomic editing: establishing preclinical toxicology standards, Bethesda, Maryland 10 June 2014. Mol Ther 23, 796.
doi: 10.1038/mt.2015.54 pmid: 25943494
[13] Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E ( 2011). CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607.
doi: 10.1038/nature09886 pmid: 3070239
[14] Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S ( 2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400.
[15] Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R ( 2018). Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359, eaar4120.
doi: 10.1126/science.aar4120 pmid: 29371424
[16] Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandra-segaran S ( 2005). Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 33, 5978-5990.
doi: 10.1093/nar/gki912 pmid: 1270952
[17] Endo M, Mikami M, Toki S ( 2015). Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56, 41.
doi: 10.1093/pcp/pcu154 pmid: 4301742
[18] Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA, Han F ( 2018). High efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J 16, 1848-1857.
doi: 10.1111/pbi.12920 pmid: 29569825
[19] Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK ( 2014). Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32, 279-284.
doi: 10.1038/nbt.2808 pmid: 24463574
[20] Gaj T, Gersbach CA, Barbas III CF ( 2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome enginee-
[21] ring.Trends Biotechnol 31, 397-405.
[22] Gasiunas G, Barrangou R, Horvath P, Siksnys V ( 2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109, E2579-E2586.
doi: 10.1073/pnas.1208507109
[23] Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR ( 2017). Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage. Nature 551, 464-471.
doi: 10.1038/s41586-018-0070-x pmid: 29160308
[24] He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y ( 2018). Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant 11, 1210-1213.
doi: 10.1016/j.molp.2018.05.005 pmid: 29857174
[25] Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH ( 2015). Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33, 985-989.
doi: 10.1038/nbt.3290 pmid: 4729442
[26] Horvath P, Romero DA, Co?té-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R ( 2008). Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190, 1401.
[27] Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR ( 2018). Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57-63.
doi: 10.1038/nature26155 pmid: 29512652
[28] Hu X, Meng X, Liu Q, Li J, Wang K ( 2017 a). Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16, 292-297.
doi: 10.1111/pbi.12771 pmid: 28605576
[29] Hu X, Wang C, Fu Y, Liu Q, Jiao X, Wang K ( 2016). Expanding the range of CRISPR/Cas9 genome editing in rice. Mol Plant 9, 943-945.
doi: 10.1016/j.molp.2016.03.003 pmid: 26995294
[30] Hu X, Wang C, Liu Q, Fu Y, Wang K ( 2017 b). Targeted mutagenesis in rice using CRISPR-Cpf1 system. J Genet Genomics 44, 71-73.
doi: 10.1016/j.jgg.2016.12.001 pmid: 28043782
[31] Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS ( 2016). Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleo proteins. Nat Biotechnol 34, 807-808.
doi: 10.1038/nbt.3596 pmid: 27272385
[32] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A ( 1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433.
[33] Jansen R, van Embden JD, Gaastra W, Schouls LM ( 2002). Identification of a novel family of sequence repeats among prokaryotes. OMICS 6, 23-33.
doi: 10.1089/15362310252780816 pmid: 11883425
[34] Jiang F, Doudna JA ( 2017). CRISPR-Cas9 structures and mechanisms. Ann Rev Biophy 46, 505-529.
doi: 10.1146/annurev-biophys-062215-010822 pmid: 28375731
[35] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E ( 2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
doi: 10.1126/science.1225829
[36] Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J ( 2013). RNA-programmed genome editing in human cells. eLife 2, e00471.
doi: 10.7554/eLife.00471 pmid: 23386978
[37] Kai H, Tao X, Yuan F, Dong W, Zhu JK ( 2018). Precise A·T to G·C base editing in the rice genome. Mol Plant 11, 627-630.
doi: 10.1016/j.molp.2018.02.007
[38] Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS, Baek IJ, Sung YH ( 2016). Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34, 808-810.
doi: 10.1038/nbt.3614 pmid: 27272387
[39] Kweon J, Jang AH, Kim DE, Yang JW, Yoon M, Rim SH, Kim JS, Kim Y ( 2017). Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun 8, 1723.
doi: 10.1038/s41467-017-01650-w pmid: 29167440
[40] Le Blanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y ( 2017). Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. Plant J 93, 377-386.
doi: 10.1111/tpj.13782 pmid: 29161464
[41] Li C, Zong Y, Wang YP, Jin S, Zhang DB, Song QN, Zhang R, Gao CX ( 2018). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19, 59.
doi: 10.1186/s13059-018-1443-z
[42] Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C ( 2016). Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2, 16139.
doi: 10.1038/nplants.2016.139 pmid: 27618611
[43] Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J ( 2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31, 688-691.
[44] Li T, Liu B, Spalding MH, Weeks DP, Yang B ( 2012). High-efficiency talen-based gene editing produces disease-resistant rice. Nat Biotechnol 30, 390-392.
doi: 10.1038/nbt.2199 pmid: 22565958
[45] Liang PP, Xu YW, Zhang XY, Ding CH, Huang R, Zhang Z, Lv J, Xie XW, Chen YX, Li YJ, Sun Y, Bai YF, Zhou SY, Ma WB, Zhou CQ, Huang JJ ( 2015). CRISPR/Cas9- mediated gene editing in human tripronuclear zygotes. Prot Cell 6, 363-372.
doi: 10.1007/s13238-015-0153-5 pmid: 25894090
[46] Liang Z, Chen K, Zhang Y, Liu J, Yin K, Qiu JL, Gao C ( 2018). Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleo proteins. Nat Protoc 13, 413-430.
[47] Lowder LG, Zhou J, Zhang Y, Malzahn A, Zhong Z, Hsieh TF, Voytas DF, Zhang Y, Qi Y ( 2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act 2.0 and mTALE-Act systems. Mol Plant 11, 245-256.
doi: 10.1016/j.molp.2017.11.010
[48] Lu HP, Liu SM, Xu SL, Chen WY, Zhou X, Tan YY, Huang JZ, Shu QY ( 2017). CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol J 15, 1371-1373.
doi: 10.1111/pbi.12788 pmid: 5633759
[49] Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG ( 2015). A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8, 1274-1284.
doi: 10.1016/j.molp.2015.04.007 pmid: 25917172
[50] Marraffini LA, Sontheimer EJ ( 2008). CRISPR interference limits horizontal gene transfer in Staphylococci by targeting DNA. Science 322, 1843-1845.
[51] Meng XB, Hu XX, Liu Q, Song XG, Gao CX, Li JY, Wang KJ ( 2018). Robust genome editing of CRISPR-Cas9 at NAG PAMs in rice. Sci China Life Sci 61, 122-125.
doi: 10.1007/s11427-017-9247-9
[52] Mikami M, Toki S, Endo M ( 2016). Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol 57, 1058-1068.
doi: 10.1093/pcp/pcw049 pmid: 26936792
[53] Miki D, Zhang W, Zeng W, Feng Z, Zhu JK ( 2018). CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9, 1967.
[54] Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ ( 2011). A tale nuclease architecture for efficient genome editing. Nat Biotechnol 29, 143-148.
doi: 10.1038/nbt.1755
[55] Mussolino C, Cathomen T ( 2013). RNA guides genome engineering. Nat Biotechnol 31, 208-209.
doi: 10.1038/nbt.2527
[56] Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S ( 2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 691-693.
[57] Peng J, Wang Y, Jiang JY, Zhou XY, Song L, Wang LL, Ding C, Qin J, Liu LP, Wang WH, Liu JQ, Huang XX, Wei H, Zhang P ( 2015). Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes. Sci Rep 5, 16705.
doi: 10.1038/srep16705 pmid: 4642324
[58] Puchta H, Dujon B, Hohn B ( 1993). Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21, 5034-5040.
[59] Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F ( 2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191.
[60] Redondo P, Prieto J, Mu?oz IG, Alibés A, Stricher F, Serrano L, Cabaniols JP, Daboussi F, Arnould S, Perez C, Duchateau P, Paques F, Blanco FJ, Montoya G ( 2008). Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature 456, 107-111.
doi: 10.1038/nature07343 pmid: 18987743
[61] Ren B, Yan F, Kuang Y, Li N, Zhang D, Zhou X, Lin H, Zhou H ( 2018). Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant. Mol Plant 11, 623-626.
doi: 10.1016/j.molp.2018.01.005 pmid: 29382569
[62] Schiml S, Fauser F, Puchta H ( 2015). The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80, 1139-1150.
doi: 10.1111/tpj.12704 pmid: 25327456
[63] Shan JW, Gao CX ( 2015). Research progress of genome editing and derivative technologies in plants. Hereditas 37, 953-973.
doi: 10.16288/j.yczz.15-156 pmid: 26496748
[64] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C ( 2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31, 686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[65] Steinert J, Schiml S, Fauser F, Puchta H ( 2015). Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J 84, 1295-1305.
[66] Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L ( 2016). Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9, 628-631.
doi: 10.1016/j.molp.2016.01.001 pmid: 26768120
[67] Symington LS, Gautier J ( 2011). Double-strand break end resection and repair pathway choice. Annu Rev Genet 45, 247-271.
doi: 10.1146/annurev-genet-110410-132435 pmid: 21910633
[68] Ungerer J, Pakrasi HB ( 2016). Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6, 39681.
doi: 10.1038/srep39681 pmid: 28000776
[69] Waltz E ( 2016). Gene-edited CRISPR mushroom escapes US regulation. Nature 532, 293.
doi: 10.1038/nature.2016.19754 pmid: 27111611
[70] Wang M, Lu Y, Botella JR, Mao Y, Hua K, Zhu JK ( 2017). Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system. Mol Plant 10, 1007-1010.
doi: 10.1016/j.molp.2017.03.002 pmid: 28315751
[71] Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS ( 2015). DNA-free genome editing in plants with preassembled CRISPRCas9 ribonucleoproteins. Nat Biotechnol 33, 1162-1164.
doi: 10.1038/nbt.3389 pmid: 26479191
[72] Xie K, Minkenberg B, Yang Y ( 2015). Boosting CRISPR/ Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112, 3570-3575.
doi: 10.1073/pnas.1420294112 pmid: 25733849
[73] Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ ( 2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14, 327.
doi: 10.1186/s12870-014-0327-y pmid: 4262988
[74] Xing YY, Yang J, Ren J ( 2016). Application of CRISPR/ Cas9 mediated genome editing in farm animals. Hereditas (Beijing) 38, 217-226.
doi: 10.16288/j.yczz.15-398 pmid: 27001476
[75] Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J ( 2014). Gene targeting using the Agrobacterium tumefaciens-
[76] mediated CRISPR-Cas system in rice.Rice 7, 5.
[77] Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J ( 2017). Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15, 713-717.
doi: 10.1111/pbi.12669 pmid: 27875019
[78] Yan F, Kuang YJ, Ren B, Wang JW, Zhang DW, Lin HH, Yang B, Zhou XP, Zhou HB ( 2018). High-efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11, 631-634.
doi: 10.1016/j.molp.2018.02.008
[79] Yu Z, Chen Q, Chen W, Zhang X, Mei F, Zhang P, Zhao M, Wang X, Shi N, Jackson S, Hong Y ( 2018). Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis. J Integr Plant Biol 60, 376-381.
doi: 10.1111/jipb.12622 pmid: 29226588
[80] Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F ( 2015). Cpf1 is a single RNA-guided Endonuclease of a Class 2 CRISPR- Cas system. Cell 163, 759-771.
doi: 10.1016/j.cell.2015.09.038 pmid: 26422227
[1] Zhang Lu,He Xinhua. Nitrogen Utilization Mechanism in C3 and C4 Plants [J]. Chin Bull Bot, 2020, 55(2): 228-239.
[2] Wang Ying, Li Xianggan, Qiu Lijuan. Research Progress in Off-target in CRISPR/Cas9 Genome Editing [J]. Chin Bull Bot, 2018, 53(4): 528-541.
[3] LI Xin-Lei CHEN Fa-Di. Advances of Genetic Improvement and Germplasm Resources for Chrysanthemum [J]. Chin Bull Bot, 2004, 21(04): 392-401.
[4] LIANG Ji CHEN Xiao-YangLIN Shan-Zhi XIE Xiang-Ming. Advance of Studies on Agrobacterium rhizogenesRi Plasmid rol Genes and Their Applications for Forest Tree Genetic Improvement [J]. Chin Bull Bot, 2002, 19(06): 650-658.
[5] TENG Nian-Jun CHEN Fa-Di. Advances of Genetic Improvement for Ornamental Plants through Genetic Engineering [J]. Chin Bull Bot, 2002, 19(05): 538-545.
[6] LIN Shan-Zhi ZHANG Zhi-Yi. Advances in Freezing_resistance of Poplars [J]. Chin Bull Bot, 2001, 18(03): 318-324.
[7] YAN Xiao-Long LIAO Hong GE Zhen-Yang LUO Xi-Wen. Root Architectural Characteristics and Phosphorus Acquisition Efficiency in Plants [J]. Chin Bull Bot, 2000, 17(06): 511-519.
Full text



[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[5] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[6] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[7] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[8] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .
[9] Li Yunxiang, Liu Yucheng, Zhong Zhangcheng. Quantitative Structure and Dynamics of Leaf Populations of Gordonia acuminata on Jinyun Mountain[J]. Chin J Plan Ecolo, 1997, 21(1): 67 -76 .