Chinese Bulletin of Botany ›› 2022, Vol. 57 ›› Issue (6): 756-763.DOI: 10.11983/CBB22190
Special Issue: 饲草生物学专辑 (2023年58卷2期、2022年57卷6期)
• ·REVIEWS· FORAGE BIOLOGY SPECIAL ISSUE • Previous Articles Next Articles
Na Wang1, Teng Jiang1, Binxi Wang1,2, Lifang Niu1, Hao Lin1,*()
Received:
2022-08-09
Accepted:
2022-10-09
Online:
2022-11-01
Published:
2022-11-18
Contact:
Hao Lin
About author:
First author contact:†These authors contributed equally to this paper
Na Wang, Teng Jiang, Binxi Wang, Lifang Niu, Hao Lin. Advances in Haploid Breeding Technology and Its Application in Alfalfa and Other Legume Forages[J]. Chinese Bulletin of Botany, 2022, 57(6): 756-763.
目的基因 | 植物物种 | 基因编辑类型 | 单倍体比例(%) | 参考文献 |
---|---|---|---|---|
AtCENH3 | Arabidopsis thaliana | Gene replacement and insertion | 25-45 | 2010 |
ZmCENH3 | Zea mays | Gene replacement and insertion/RNAi | 0.16-3.6 | 2016 |
TaCENH3 | Triticum aestivum | Gene replacement and insertion | 7 | 2020 |
ZmCENH3 | Z. mays | Site-specified knockout | 0.5-5 | 2021 |
ZmMTL | Z. mays | TALENs | 6.7 | 2017 |
ZmPLA1 | Z. mays | Site-specified knockout | 1.55-6.67 | 2017 |
ZmNLD | Z. mays | Gene replacement and insertion | 0.5-3.59 | 2017a |
OsMATL | Oryza sativa | Site-specified knockout | 2-6 | 2018 |
TaPLA | T. aestivum | Site-specified knockout | 5.88-15.66 | 2020a |
TaMTL | T. aestivum | Site-specified knockout | 11.8-31.6 | 2020b |
SiMTL | Setaria italica | Site-specified knockout | 1.75-3.49 | 2021 |
ZmDMP | Z. mays | Site-specified knockout | 0.1-0.3 | 2019 |
AtDMP8/9 | A. thaliana | Site-specified knockout | 0.92-3.23 | 2020 |
MtDMP8/9 | Medicago truncatula | Site-specified knockout | 0.29-0.82 | 2022 |
SlDMP | Solanum lycopersicum | Site-specified knockout | 0.49-3.68 | 2022a |
BnaDMP | Brassica napus | Site-specified knockout | 2.4 | 2022b |
ZmPLD3 | Z. mays | Site-specified knockout | 0.85-0.96 | 2021 |
ZmPOD65 | Z. mays | Site-specified knockout | 0.9-7.7 | 2022 |
Table1 Related genes of in vivo haploid induction mediated by gene editing technology
目的基因 | 植物物种 | 基因编辑类型 | 单倍体比例(%) | 参考文献 |
---|---|---|---|---|
AtCENH3 | Arabidopsis thaliana | Gene replacement and insertion | 25-45 | 2010 |
ZmCENH3 | Zea mays | Gene replacement and insertion/RNAi | 0.16-3.6 | 2016 |
TaCENH3 | Triticum aestivum | Gene replacement and insertion | 7 | 2020 |
ZmCENH3 | Z. mays | Site-specified knockout | 0.5-5 | 2021 |
ZmMTL | Z. mays | TALENs | 6.7 | 2017 |
ZmPLA1 | Z. mays | Site-specified knockout | 1.55-6.67 | 2017 |
ZmNLD | Z. mays | Gene replacement and insertion | 0.5-3.59 | 2017a |
OsMATL | Oryza sativa | Site-specified knockout | 2-6 | 2018 |
TaPLA | T. aestivum | Site-specified knockout | 5.88-15.66 | 2020a |
TaMTL | T. aestivum | Site-specified knockout | 11.8-31.6 | 2020b |
SiMTL | Setaria italica | Site-specified knockout | 1.75-3.49 | 2021 |
ZmDMP | Z. mays | Site-specified knockout | 0.1-0.3 | 2019 |
AtDMP8/9 | A. thaliana | Site-specified knockout | 0.92-3.23 | 2020 |
MtDMP8/9 | Medicago truncatula | Site-specified knockout | 0.29-0.82 | 2022 |
SlDMP | Solanum lycopersicum | Site-specified knockout | 0.49-3.68 | 2022a |
BnaDMP | Brassica napus | Site-specified knockout | 2.4 | 2022b |
ZmPLD3 | Z. mays | Site-specified knockout | 0.85-0.96 | 2021 |
ZmPOD65 | Z. mays | Site-specified knockout | 0.9-7.7 | 2022 |
Figure 2 Model of the uniparental chromosome elimination in the CENH3-based haploid inducer (A) Normal parent crossing; (B) Cross between CENH3 mutant female parent and normal male parent
[1] | 金京波, 王台, 程佑发, 王雷, 张景昱, 景海春, 种康 (2021). 我国牧草育种现状与展望. 中国科学院院刊 36, 660-665. |
[2] | 潘家驹 (1994). 作物育种学总论. 北京: 农业出版社. pp. 141-142. |
[3] | Alan AR, Mutschler MA, Brants A, Cobb E, Earle ED (2003). Production of gynogenic plants from hybrids of Allium cepa L. and A. roylei Stearn. Plant Sci 165, 1201-1211. |
[4] | Armstrong JM (1959). Pollen irradiation as a method of inducing variation in alfalfa. Can J Genet Cytol 1, 110-117. |
[5] | Bingham T (1971). Isolation of haploids of tetraploid alfalfa. Crop Sci 11, 433-435. |
[6] | Bohanec B, Jakse M, Havey MJ (2003). Genetic analyses of gynogenetic haploid production in onion. J Am Soc Hortic Sci 128, 571-574. |
[7] |
Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132, 3227-3243.
DOI PMID |
[8] | Chekurov VM, Razmakhnin EP (1999). Effect of inbreeding and growth regulators on the in vitro androgenesis of wheatgrass, Agropyron glaucum. Plant Breed 118, 571-573. |
[9] |
Chen HT, Zeng Y, Yang YZ, Huang LL, Tang BL, Zhang H, Hao F, Liu W, Li YH, Liu YB, Zhang XS, Zhang R, Zhang YS, Li YX, Wang K, He H, Wang ZK, Fan GY, Yang H, Bao AK, Shang ZH, Chen JH, Wang W, Qiu Q (2020). Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun 11, 2494.
DOI PMID |
[10] | Cheng ZX, Sun Y, Yang SH, Zhi H, Yin T, Ma XJ, Zhang HS, Diao XM, Guo Y, Li XH, Wu CY, Sui Y (2021). Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J 19, 1089-1091. |
[11] | Croser JS, Lülsdorf MM, Davies PA, Clarke HJ, Bayliss KL, Mallikarjuna N, Siddique KHM (2006). Toward doubled haploid production in the Fabaceae: progress, constraints, and opportunities. Crit Rev Plant Sci 25, 139-157. |
[12] |
Gao CX (2021). Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
DOI PMID |
[13] | Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant JP, Rogowsky PM, Widiez T (2017a). Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36, 707-717. |
[14] | Gilles LM, Martinant JP, Rogowsky PM, Widiez T (2017b). Haploid induction in plants. Curr Biol 27, 1095-1097. |
[15] | Guha S, Maheshwari SC (1964). In vitro production of embryos from anthers of Datura. Nature 204, 497. |
[16] |
Jiang CL, Sun J, Li R, Yan SJ, Chen W, Guo L, Qin GC, Wang PC, Luo C, Huang WJ, Zhang QH, Fernie AR, Jackson D, Li X, Yan JB (2022). A reactive oxygen species burst causes haploid induction in maize. Mol Plant 15, 943-955.
DOI PMID |
[17] |
Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A (2019). State-of-the-art and novel developments of in vivo haploid technologies. Theor Appl Genet 132, 593-605.
DOI PMID |
[18] | Kasha KJ, Kao KN (1970). High frequency haploid production in barley (Hordeum vulgare L.). Nature 225, 874-876. |
[19] | Kasha KJ, Maluszynski M (2003). Production of doubled haploids in crop plants. An introduction. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I, eds. Doubled Haploid Production in Crop Plants. A Manual. Dordrecht: Springer. pp. 1-4. |
[20] | Keller ERJ, Korzun L (1996). Ovary and ovule culture for haploid production. In: Jain SM, Sopory SK, Veilleux RE, eds. In Vitro Haploid Production in Higher Plants. Dordrecht: Springer. pp. 217-236. |
[21] | Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen ZY, McCuiston J, Wang WL, Liebler T, Bullock P, Martin B (2017). MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542, 105-109. |
[22] |
Kelliher T, Starr D, Wang WL, McCuiston J, Zhong H, Nuccio ML, Martin B (2016). Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7, 414.
DOI PMID |
[23] |
Kermicle JL (1969). Androgenesis conditioned by a mutation in maize. Science 166, 1422-1424.
DOI PMID |
[24] | Kiviharju E, Moisander S, Laurila J (2005). Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue Organ Cult 81, 1-9. |
[25] | Kleiber D, Prigge V, Melchinger AE, Burkard F, San Vicente F, Palomino G, Gordillo GA (2012). Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52, 623-630. |
[26] | Li Y, Lin Z, Yue Y, Zhao HM, Fei XH, E LZ, Liu CX, Chen SJ, Lai JS, Song WB (2021). Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nat Plants 7, 1579-1588. |
[27] | Liu CX, Li X, Meng DX, Zhong Y, Chen C, Dong X, Xu XW, Chen BJ, Li W, Li L, Tian XL, Zhao HM, Song WB, Luo HS, Zhang QH, Lai JS, Jin WW, Yan JB, Chen SJ (2017). A 4 bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10, 520-522. |
[28] | Liu CX, Zhong Y, Qi XL, Chen M, Liu ZK, Chen C, Tian XL, Li JL, Jiao YY, Wang D, Wang YW, Li MR, Xin MM, Liu WX, Jin WW, Chen SJ (2020a). Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol J 18, 316-318. |
[29] | Liu HY, Wang K, Jia ZM, Gong Q, Lin ZS, Du LP, Pei XW, Ye XG (2020b). Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J Exp Bot 71, 1337-1349. |
[30] |
Long RC, Zhang F, Zhang ZW, Li MN, Chen L, Wang X, Liu WW, Zhang TJ, Yu LX, He F, Jiang XQ, Yang XJ, Yang CF, Wang Z, Kang JM, Yang QC (2022). Genome assembly of alfalfa cultivar Zhongmu-4 and identification of SNPs associated with agronomic traits. Genom Proteom Bioinf 20, 14-28.
DOI PMID |
[31] | Lv J, Yu K, Wei J, Gui HP, Liu CX, Liang DW, Wang YL, Zhou HJ, Carlin R, Rich R, Lu TC, Que QD, Wang WC, Zhang XP, Kelliher T (2020). Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat Biotechnol 38, 1397-1401. |
[32] | Ma R, Guo YD, Pulli S (2004). Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell Tissue Organ Cult 76, 147-157. |
[33] | Prigge V, Xu XW, Li L, Babu R, Chen SJ, Atlin GN, Melchinger AE (2012). New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190, 781-793. |
[34] | Radović J, Sokolović D, Marković J (2009). Alfalfa-most important perennial forage legume in animal husbandry. Biotechnol Anim Husb 25, 465-475. |
[35] | Ravi M, Chan SWL (2010). Haploid plants produced by centromere-mediated genome elimination. Nature 464, 615-618. |
[36] | Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen CB, Murata M, Chan SWL (2011). Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genet 7, e1002121. |
[37] |
Ren JJ, Wu PH, Trampe B, Tian XL, Lübberstedt T, Chen SJ (2017). Novel technologies in doubled haploid line development. Plant Biotechnol J 15, 1361-1370.
DOI PMID |
[38] | Saunders JW, Bingham ET (1972). Production of alfalfa plants from callus tissue. Crop Sci 12, 804-808. |
[39] |
Seguí-Simarro JM, Nuez F (2008). Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120, 358-369.
DOI PMID |
[40] |
Shen C, Du HL, Chen Z, Lu HW, Zhu FG, Chen H, Meng XZ, Liu QW, Liu P, Zheng LH, Li XX, Dong JL, Liang CZ, Wang T (2020). The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol Plant 13, 1250-1261.
DOI PMID |
[41] | Stanford EH, Clement WM (1958). Cytology and crossing behavior of a haploid alfalfa plant. Agron J 50, 589-592. |
[42] | Sun GL, Geng SF, Zhang HJ, Jia ML, Wang ZY, Deng ZY, Tao S, Liao RY, Wang F, Kong XC, Fu MX, Liu SS, Li AL, Mao L (2022). Matrilineal empowers wheat pollen with haploid induction potency by triggering post mitosis reactive oxygen species activity. New Phytol 233, 2405-2414. |
[43] | Thompson KF (1974). Homozygous diploid lines from naturally occurring haploids. In: Proc 4th Int Rapskongr. 4th International Rapeseed Congress pp.119-124. |
[44] |
Wang C, Liu Q, Shen Y, Hua YF, Wang JJ, Lin JR, Wu MG, Sun TT, Cheng ZK, Mercier R, Wang KJ (2019). Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat Biotechnol 37, 283-286.
DOI PMID |
[45] | Wang D, Khurshid M, Sun ZM, Tang YX, Zhou ML, Wu YM (2016). Genetic engineering of alfalfa (Medicago sativa L.). Protein Pept Lett 23, 495-502. |
[46] | Wang N, Gent JI, Dawe RK (2021). Haploid induction by a maize cenh3null mutant. Sci Adv 7, eabe2299. |
[47] | Wang N, Xia XZ, Jiang T, Li LL, Zhang PC, Niu LF, Cheng HM, Wang KJ, Lin H (2022). In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnol J 20, 22-24. |
[48] |
Xie E, Li YF, Tang D, Lv YL, Shen Y, Cheng ZK (2019). A strategy for generating rice apomixis by gene editing. J Integr Plant Biol 61, 911-916.
DOI |
[49] |
Yang S, Zu YQ, Li B, Bi YF, Jia L, He YM, Li Y (2019). Response and intraspecific differences in nitrogen metabolism of alfalfa (Medicago sativa L.) under cadmium stress. Chemosphere 220, 69-76.
DOI PMID |
[50] |
Yao L, Zhang Y, Liu CX, Liu YB, Wang YL, Liang DW, Liu JT, Sahoo G, Kelliher T (2018). OsMATL mutation induces haploid seed formation in indica rice. Nat Plants 4, 530-533.
DOI PMID |
[51] |
Zagorska N, Dimitrov B (1995). Induced androgenesis in alfalfa (Medicago sativa L.). Plant Cell Rep 14, 249-252.
DOI PMID |
[52] |
Zhong Y, Chen BJ, Li MR, Wang D, Jiao YY, Qi XL, Wang M, Liu ZK, Chen C, Wang YW, Chen M, Li JL, Xiao ZJ, Cheng DH, Liu WX, Boutilier K, Liu CX, Chen SJ (2020). A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat Plants 6, 466-472.
DOI PMID |
[53] | Zhong Y, Chen BJ, Wang D, Zhu XJ, Li MR, Zhang JZ, Chen M, Wang M, Riksen T, Liu JC, Qi XL, Wang YW, Cheng DH, Liu ZK, Li JL, Chen C, Jiao YY, Liu WX, Huang SW, Liu CX, Boutilier K, Chen SJ (2022a). In vivo maternal haploid induction in tomato. Plant Biotechnol J 20, 250-252. |
[54] |
Zhong Y, Liu CX, Qi XL, Jiao YY, Wang D, Wang YW, Liu ZK, Chen C, Chen BJ, Tian XL, Li JL, Chen M, Dong X, Xu XW, Li L, Li W, Liu WX, Jin WW, Lai JS, Chen SJ (2019). Mutation of ZmDMP enhances haploid induction in maize. Nat Plants 5, 575-580.
DOI PMID |
[55] | Zhong Y, Wang YW, Chen BJ, Liu JC, Wang D, Li MR, Qi XL, Liu CX, Boutilier K, Chen SJ (2022b). Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. J Integr Plant Biol 64, 1281-1294. |
[1] | Zhaosheng Kong, Wenqiang Yang, Baichen Wang, Rongcheng Lin. Research Progress in Efficient Fixation, Transport, Assimilation of Carbon and Nitrogen in Legume Forages [J]. Chinese Bulletin of Botany, 2022, 57(6): 764-773. |
[2] | Hualing Xie, Yanping Yang, Yu Dong, Tai Wang. Analysis on International Development Trends of Alfalfa [J]. Chinese Bulletin of Botany, 2021, 56(6): 740-750. |
[3] | LI Qiang, HUANG Ying-Xin, ZHOU Dao-Wei, CONG Shan. Mechanism of the trade-off between biological nitrogen fixation and phosphorus acquisition strategies of herbaceous legumes under nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2021, 45(3): 286-297. |
[4] | ZHU Lin,QI Ya-Shu,XU Xing. Water sources of Medicago sativa grown in different slope positions in Yanchi County of Ningxia [J]. Chin J Plant Ecol, 2014, 38(11): 1226-1240. |
[5] | Liping Yan, Yang Xia, Xiuhong Mao, Cuilan Liu, Huimin Liang. Breeding and Salt Resistance Evaluation of BADH Transgenic Alfalfa Cultivar Shanmu 2 [J]. Chinese Bulletin of Botany, 2011, 46(3): 293-301. |
[6] | BAI Wen-Ming, ZUO Qiang, LI Bao-Guo. A Simulation Model for Water Uptake by Alfalfa Roots in the Wulanbuhe Sandy Desert [J]. Chin J Plan Ecolo, 2001, 25(4): 431-437. |
[7] | Li Feng-min, Zhang Zhen-wan. The Study on water Use of the Aifalfa Grassland and the Stipa bungeana Grassland in Ningxia Yanchi [J]. Chin J Plan Ecolo, 1991, 15(4): 319-329. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||