Chin Bull Bot ›› 2019, Vol. 54 ›› Issue (1): 119-132.doi: 10.11983/CBB18047

• SPECIAL TOPICS • Previous Articles     Next Articles

Regulatory Mechanism of Thioredoxin (Trx) in Chloroplasts

Qin Tong1,2,Huang Zhen2,*(),Kang Zhenhui1,*()   

  1. 1 College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China;
    2 Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
  • Received:2018-02-17 Accepted:2018-05-23 Online:2019-07-31 Published:2019-01-01
  • Contact: Huang Zhen,Kang Zhenhui E-mail:zhen_huang@scu.edu.cn;zhkang85@126.com

Abstract:

Thioredoxins (Trx), a family of thiol-disulfide oxidoreductases, function as protein disulfide reductases to disulfide isomerases or to disulfide transferases to regulate the structure and function of intracellular proteins by modifying disulfide bonds between two cysteine residues in the side chain of the substrate proteins. The chloroplast Trx systems includes Trx and Trx-like proteins, ferredoxin (Fd)-dependent thioredoxin reductase (FTR) and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin C (NADPH Trx reductase C, NTRC). In addition to regulating the activity of stromal enzymes and transportation of chloroplast proteins by the Trx system, the chloroplast contains a reduction potential transfer pathway across the thylakoid membrane. The reduction potential of the substrate Trx is mediated by the transmembrane transporter and finally to the thylakoid lumenal protein. FTR and NTRC coordinate to regulate chloroplast homeostasis. This paper summarizes the regulatory mechanism of the chloroplast thioredoxin system that highlights the significance of the chloroplast Trx system in maintaining photosynthetic efficiency in plants.

Key words: chloroplast, disulfide, photosynthetic efficiency, redox, thioredoxin

Table 1

Chloroplast Trx systems in Arabidopsis"

名称 登录号 氧化还原电位* 功能 参考文献
FTRA1 AT5G23440 -356 mV 还原酶 Balsera et al., 2013; Wang et al., 2014; Yoshida and Hisabori, 2017
FTRA2 AT5G08410 -356 mV 还原酶 Balsera et al., 2013; Wang et al., 2014; Yoshida and Hisabori, 2017
FTRB AT2G04700 -356 mV 还原酶 Balsera et al., 2013; Wang et al., 2014; Yoshida and Hisabori, 2017
NTRC AT2G41680 -330 mV 还原酶 Michalska et al., 2009; Chae et al., 2013; Bernal-Bayard et al., 2014; Puerto-Galán et al., 2015; Carrilloet al., 2016; Naranjo et al., 2016b; Pérez-Ruiz et al., 2017
Trx f1 AT3G02730 -321 mV (pH7.5) 调节FBPase和ATP合酶(CF 1 γ亚基)活性, 氧化胁迫 Hisabori et al., 2013; Yoshida et al., 2015
Trx f2 AT5G16400 -321 mV (pH7.5) 调节FBPase和ATP合酶(CF 1 γ亚基)活性, 氧化胁迫 Hisabori et al., 2013; Yoshida et al., 2015
Trx m1 AT1G03680 -335 mV (pH7.5) 调节Calvin-Benson循环酶活性 Okegawa and Motohashi, 2015
Trx m2 AT4G03520 -335 mV (pH7.5) 调节Calvin-Benson循环酶活性 Okegawa and Motohashi, 2015
Trx m3 AT2G15570 -316 mV (pH7.5) 胞内蛋白运输和分生组织维持 Benitez-Alfonso et al., 2009
Trx m4 AT3G15360 -312 mV (pH7.5) 调节Calvin-Benson循环酶活性, 环形电子传递 Okegawa and Motohashi, 2015
Trx y1 AT1G76760 -296 mV (pH7.5) 胁迫响应 Okegawa and Motohashi, 2015
Trx y2 AT1G43560 -295 mV (pH7.5) 硫代谢 Laugier et al., 2013
Trx x AT1G50320 -310 mV (pH7.5) 胁迫响应 Bernal-Bayard et al., 2014
Trx z AT3G06730 -276 mV (pH7.5) 质体转录胁迫应激 Arsova et al., 2010; Chibani et al., 2011; Díaz et al., 2018
HCF164 At4G37200 -224 mV ** Cyt b6f复合体装配 Motohashi and Hisabori, 2010
LTO1 AT4G35760 -180 mV *** 蛋白折叠 Wang et al., 2011; Karamoko et al., 2011, 2013
SOQ1 At1G56500 未知 光抑制淬灭 Brooks et al., 2013
CDSP32 AT1G76080 -337 mV (pH7.9) 调节MSRB1的活性 Tarrago et al., 2010
AtACHT1 (Lilium 5) AT4G26160 -237 mV 抗氧化 Dangoor et al., 2009, 2012
AtACHT2a (Lilium 2) AT4G29670.1 -239 mV 未知 Dangoor et al., 2009
AtACHT2b (Lilium 2) AT4G29670.2 未知 未知 Dangoor et al., 2009
AtACHT3 (Lilium 4) AT2G33270 未知 未知 Dangoor et al., 2009
AtACHT4a (Lilium 1) AT1G08570.1 -240 mV 淀粉合成 Dangoor et al., 2009; Eliyahu et al., 2015
AtACHT4b (Lilium 1) AT1G08570.2 未知 淀粉合成 Dangoor et al., 2009; Eliyahu et al., 2015
AtACHT5 (Lilium 3) AT5G61440 未知 未知 Dangoor et al., 2009
WCRKC1 AT5G06690 未知 冷胁迫 Chibani et al., 2011
WCRKC2 AT5G04260 未知 冷胁迫 Chibani et al., 2011

Figure 1

Chloroplast Trx systems and their functions The Trx systems in chloroplast play important roles in regulating key enzymes of Calvin cycle, plastid biogenesis, sulfur metabolism, stress response, and the synthesis of chlorophyll, tetrapyrrole, and starch. Since FTR affects all 5 Trx proteins, the lines are not marked in the figure. The target of SOQ1 on the PSII subunits is still unknown."

1 孙虎, 薛保国, 杨丽荣, 全鑫, 朱自贤, 武超, 马雪娇 ( 2010). 植物硫氧还蛋白系统. 基因组学与应用生物学 29, 748-753.
doi: 10.3969/gab.029.000748
2 张艳玲, 孙旭武, 张立新 ( 2009). 拟南芥叶绿体中DEG蛋白酶功能的研究进展. 植物学报 44, 37-42.
doi: 10.3969/j.issn.1674-3466.2009.01.004
3 Arnoux P, Morosinotto T, Saga G, Bassi R, Pignol D ( 2009). A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana.Plant Cell 21, 2036-2044.
4 Arsova B, Hoja U, Wimmelbacher M, Greiner E, üstün S, Melzer M, Petersen K, Lein W, B?rnke F ( 2010). Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana.Plant Cell 22, 1498-1515.
doi: 10.1105/tpc.109.071001 pmid: 20511297
5 Balsera M, Uberegui E, Schürmann P, Buchanan BB ( 2014). Evolutionary development of redox regulation in chloroplasts. Antioxid Redox Signal 21, 1327-1355.
doi: 10.1089/ars.2013.5817 pmid: 24483204
6 Balsera M, Uberegui E, Susanti D, Schmitz RA, Mukhopadhyay B, Schürmann P, Buchanan BB ( 2013). Ferredoxin: thioredoxin reductase (FTR) links the regulation of oxygenic photosynthesis to deeply rooted bacteria. Planta 237, 619-635.
doi: 10.1007/s00425-012-1803-y pmid: 23223880
7 Belin C, Bashandy T, Cela J, Delorme-Hinoux V, Riondet C, Reichheld JP ( 2015). A comprehensive study of thiol reduction gene expression under stress conditions in Ara- bidopsis thaliana.Plant Cell Environ 38, 299-314.
doi: 10.1111/pce.12276 pmid: 24428628
8 Benitez-Alfonso Y, Cilia M, San Roman A, Thomas C, Maule A, Hearn S, Jackson D ( 2009). Control of Arabidopsis meristem development by thioredoxin-dependent regulation of intercellular transport. Proc Natl Acad Sci USA 106, 3615-3620.
doi: 10.1073/pnas.0808717106 pmid: 19218459
9 Bernal-Bayard P, Ojeda V, Hervás M, Cejudo FJ, Navarro JA, Velázquez-Campoy A, Pérez-Ruiz JM ( 2014). Molecular recognition in the interaction of chloroplast 2-Cys peroxiredoxin with NADPH-thioredoxin reductase C (NTRC) and thioredoxin x. FEBS Lett 588, 4342-4347.
doi: 10.1016/j.febslet.2014.09.044 pmid: 25448674
10 Betterle N, Ballottari M, Baginsky S, Bassi R ( 2015). High light-dependent phosphorylation of photosystem II inner antenna CP29 in monocots is STN7 independent and enhances nonphotochemical quenching. Plant Physiol 167, 457-471.
doi: 10.1104/pp.114.252379 pmid: 25501945
11 Bohrer AS, Massot V, Innocenti G, Reichheld JP, Issakidis-Bourguet E, Vanacker H ( 2012). New insights into the reduction systems of plastidial thioredoxins point out the unique properties of thioredoxin z from Arabidopsis. J Exp Bot 63, 6315-6323.
doi: 10.1093/jxb/ers283 pmid: 23096001
12 Bolter B, Soll J, Schwenkert S ( 2015). Redox meets protein trafficking. Biochim Biophys Acta 1847, 949-956.
13 Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK ( 2013). A thioredoxin-like/ β-propeller protein maintains the efficiency of light harvesting in Arabidopsis.Proc Natl Acad Sci USA 110, E2733-E2740.
14 Buchanan BB ( 2016). The path to thioredoxin and redox regulation in chloroplasts. Annu Rev Plant Biol 67, 1-24.
doi: 10.1146/annurev-arplant-043015-111949 pmid: 27128465
15 Buchanan BB, Holmgren A, Jacquot JP, Scheibe R ( 2012). Fifty years in the thioredoxin field and a bountiful harvest. Biochim Biophys Acta 1820, 1822-1829.
doi: 10.1016/j.bbagen.2012.07.006 pmid: 22863419
16 Cain P, Hall M, Schr?der WP, Kieselbach T, Robinson C ( 2009). A novel extended family of stromal thioredoxins. Plant Mol Biol 70, 273-281.
doi: 10.1007/s11103-009-9471-4 pmid: 19259774
17 Carrillo LR, Froehlich JE, Cruz JA, Savage LJ, Kramer DM ( 2016). Multi-level regulation of the chloroplast ATP synthase: the chloroplast NADPH thioredoxin reductase C (NTRC) is required for redox modulation specifically under low irradiance. Plant J 87, 654-663.
doi: 10.1111/tpj.13226 pmid: 27233821
18 Cejudo FJ, Ferrández J, Cano B, Puerto-Galán L, Guinea M ( 2012). The function of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system in plastid redox regulation and signaling. FEBS Lett 586, 2974-2980.
doi: 10.1016/j.febslet.2012.07.003 pmid: 22796111
19 Chae HB, Moon JC, Shin MR, Chi YH, Jung YJ, Lee SY, Nawkar GM, Jung HS, Hyun JK, Kim WY, Kang CH, Yun DJ, Lee KO, Lee SY ( 2013). Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function. Mol Plant 6, 323-336.
doi: 10.1093/mp/sss105 pmid: 23024205
20 Cheng F, Zhou YH, Xia XJ, Shi K, Zhou J, Yu JQ ( 2014). Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. J Exp Bot 65, 4335-4347.
doi: 10.1093/jxb/eru207 pmid: 4112637
21 Chibani K, Tarrago L, Schürmann P, Jacquot JP, Rouhier N ( 2011). Biochemical properties of poplar thioredoxin z. FEBS Lett 585, 1077-1081.
doi: 10.1016/j.febslet.2011.03.006 pmid: 21385584
22 Cook KM, Hogg PJ ( 2013). Post-translational control of protein function by disulfide bond cleavage. Antioxid Redox Signal 18, 1987-2015.
doi: 10.1089/ars.2012.4807 pmid: 23198756
23 Courteille A, Vesa S, Sanz-Barrio R, Cazalé AC, Becuwe- Linka N, Farran I, Havaux M, Rey P, Rumeau D ( 2013). Thioredoxin m4 controls photosynthetic alternative electron pathways in Arabidopsis. Plant Physiol 161, 508-520.
doi: 10.1104/pp.112.207019 pmid: 23151348
24 Couturier J, Chibani K, Jacquot JP, Rouhier N ( 2013). Cysteine-based redox regulation and signaling in plants. Front Plant Sci 4, 105.
doi: 10.3389/fpls.2013.00105 pmid: 23641245
25 Da QE, Wang P, Wang ML, Sun T, Jin HL, Liu B, Wang JF, Grimm B, Wang HB ( 2017). Thioredoxin and NADPH- dependent thioredoxin reductase C regulation of tetrapyrrole biosynthesis. Plant Physiol 175, 652-666.
doi: 10.1104/pp.16.01500 pmid: 28827456
26 Dangoor I, Peled-Zehavi H, Levitan A, Pasand O, Danon A ( 2009). A small family of chloroplast atypical thioredoxins. Plant Physiol 149, 1240-1250.
doi: 10.1104/pp.108.128314 pmid: 19109414
27 Dangoor I, Peled-Zehavi H, Wittenberg G, Danon A ( 2012). A chloroplast light-regulated oxidative sensor for moderate light intensity in Arabidopsis. Plant Cell 24, 1894-1906.
doi: 10.1105/tpc.112.097139 pmid: 22570442
28 Díaz MG, Hernández-Verdeja T, Kremnev D, Crawford T, Dubreuil C, Strand ? ( 2018). Redox regulation of PEP activity during seedling establishment in Arabidopsis tha- liana.Nat Commun 9, 50.
29 Dietz KJ, Pfannschmidt T ( 2011). Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155, 1477-1485.
doi: 10.1104/pp.110.170043 pmid: 21205617
30 Dutton RJ, Wayman A, Wei JR, Rubin EJ, Beckwith J, Boyd D ( 2010). Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc Natl Acad Sci USA 107, 297-301.
doi: 10.1073/pnas.0912952107 pmid: 20018758
31 Eliyahu E, Rog I, Inbal D, Danon A ( 2015). ACHT4-driven oxidation of APS1 attenuates starch synthesis under low light intensity in Arabidopsis plants. Proc Natl Acad Sci USA 112, 12876-12881.
doi: 10.1073/pnas.1515513112 pmid: 26424450
32 Feng WK, Wang L, Lu Y, Wang XY ( 2011). A protein oxidase catalysing disulfide bond formation is localized to the chloroplast thylakoids. FEBS J 278, 3419-3430.
doi: 10.1111/j.1742-4658.2011.08265.x pmid: 21781282
33 Fufezan C, Simionato D, Morosinotto T ( 2012). Identification of key residues for pH dependent activation of violaxanthin de-epoxidase from Arabidopsis thaliana.PLoS One 7, e35669.
doi: 10.1371/journal.pone.0035669 pmid: 3338714
34 Furt F, Van Oostende C, Widhalm JR, Dale MA, Wertz J, Basset GJC ( 2010). A bimodular oxidoreductase mediates the specific reduction of phylloquinone (vitamin K1) in chloroplasts. Plant J 64, 38-46.
doi: 10.1111/j.1365-313X.2010.04305.x pmid: 20626653
35 Geigenberger P, Fernie AR ( 2014). Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 21, 1389-1421.
doi: 10.1089/ars.2014.6018 pmid: 4158967
36 Goss R, Lepetit B ( 2015). Biodiversity of NPQ. J Plant Physiol 172, 13-32.
37 Gütle DD, Roret T, Hecker A, Reski R, Jacquot JP ( 2017). Dithiol disulphide exchange in redox regulation of chloroplast enzymes in response to evolutionary and structural constraints. Plant Sci 255, 1-11.
doi: 10.1016/j.plantsci.2016.11.003 pmid: 28131337
38 Gütle DD, Roret T, Müller SJ, Couturier J, Lemaire SD, Hecker A, Dhalleine T, Buchanan BB, Reski R, Einsle O, Jacquot JP ( 2016). Chloroplast FBPase and SBPase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories. Proc Natl Acad Sci USA 113, 6779-6784.
doi: 10.1073/pnas.1606241113 pmid: 27226308
39 Hall M, Mata-Cabana A, ?kerlund HE, Florencio FJ, Schr?der WP, Lindahl M, Kieselbach T ( 2010). Thioredoxin targets of the plant chloroplast lumen and their implications for plastid function. Proteomics 10, 987-1001.
doi: 10.1002/pmic.200900654 pmid: 20049866
40 Hallin EI, Guo K, ?kerlund HE ( 2015). Violaxanthin de-epo- xidase disulphides and their role in activity and thermal stability. Photosynth Res 124, 191-198.
doi: 10.1007/s11120-015-0118-9 pmid: 25764016
41 Hertle AP, Blunder T, Wunder T, Pesaresi P, Pribil M, Armbruster U, Leister D ( 2013). PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow. Mol Cell 49, 511-523.
doi: 10.1016/j.molcel.2012.11.030 pmid: 23290914
42 Hisabori T, Sunamura EI, Kim Y, Konno H ( 2013). The chloroplast ATP synthase features the characteristic redox regulation machinery. Antioxid Redox Signal 19, 1846-1854.
43 Jacquot JP, Eklund H, Rouhier N, Schürmann P ( 2009). Structural and evolutionary aspects of thioredoxin reductases in photosynthetic organisms. Trends Plant Sci 14, 336-343.
doi: 10.1016/j.tplants.2009.03.005
44 J?rvi S, Gollan PJ, Aro EM ( 2013). Understanding the roles of the thylakoid lumen in photosynthesis regulation. Front Plant Sci 4, 434.
doi: 10.3389/fpls.2013.00434 pmid: 24198822
45 Kang ZH, Wang GX ( 2016). Redox regulation in the thylakoid lumen. J Plant Physiol 192, 28-37.
doi: 10.1016/j.jplph.2015.12.012 pmid: 26812087
46 Karamoko M, Cline S, Redding K, Ruiz N, Hamel PP ( 2011). Lumen Thiol Oxidoreductase 1, a disulfide bond- forming catalyst, is required for the assembly of photosystem II in Arabidopsis. Plant Cell 23, 4462-4475.
doi: 10.1105/tpc.111.089680 pmid: 22209765
47 Karamoko M, Gabilly ST, Hamel PP ( 2013). Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis.Front Plant Sci 4, 476.
48 Kieselbach T ( 2013). Oxidative folding in chloroplasts. Antioxid Redox Signal 19, 72-82.
49 Kim MR, Khaleda L, Jung IJ, Kim JY, Lee SY, Cha JY, Kim WY ( 2017). Overexpression of chloroplast-localized NAD- PH-dependent thioredoxin reductase C (NTRC) enhances tolerance to photo-oxidative and drought stresses in Ara- bidopsis thaliana.J Plant Biol 60, 175-180.
50 Kirchsteiger K, Ferrández J, Pascual MB, González M, Cejudo FJ ( 2012). NADPH thioredoxin reductase C is localized in plastids of photosynthetic and nonphotosynthetic tissues and is involved in lateral root formation in Arabidopsis. Plant Cell 24, 1534-1548.
51 Kirchsteiger K, Pulido P, González M, Cejudo FJ ( 2009). NADPH thioredoxin reductase C controls the redox status of chloroplast 2-Cys peroxiredoxins in Arabidopsis thalia- na.Mol Plant 2, 298-307.
52 K?nig J, Muthuramalingam M, Dietz KJ ( 2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Curr Opin Plant Biol 15, 261-268.
doi: 10.1016/j.pbi.2011.12.002 pmid: 22226570
53 Laugier E, Tarrago L, Courteille A, Innocenti G, Eymery F, Rumeau D, Issakidis-Bourguet E, Rey P ( 2013). Involvement of thioredoxin y2 in the preservation of leaf methionine sulfoxide reductase capacity and growth under high light. Plant Cell Environ 36, 670-682.
doi: 10.1111/pce.12005 pmid: 22943306
54 Lepist? A, Kangasj?rvi S, Luomala EM, Brader G, Sipari N, Ker?nen M, Kein?nen M, Rintam?ki E ( 2009). Chlo- roplast NADPH-thioredoxin reductase interacts with photoperiodic development in Arabidopsis. Plant Physiol 149, 1261-1276.
doi: 10.4161/psb.4.6.8711 pmid: 19151130
55 Lindahl M, Kieselbach T ( 2009). Disulphide proteomes and interactions with thioredoxin on the track towards understanding redox regulation in chloroplasts and cyanobacteria. J Proteomics 72, 416-438.
doi: 10.1016/j.jprot.2009.01.003 pmid: 19185068
56 Lindahl M, Mata-Cabana A, Kieselbach T ( 2011). The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance. Antioxid Redox Signal 14, 2581-2642.
doi: 10.1089/ars.2010.3551 pmid: 21275844
57 Lu Y, Wang HR, Li H, Cui HR, Feng YG, Wang XY ( 2013). A chloroplast membrane protein LTO1/AtVKOR involving in redox regulation and ROS homeostasis. Plant Cell Rep 32, 1427-1440.
doi: 10.1007/s00299-013-1455-9 pmid: 23689258
58 Luo T, Fan TT, Liu YN, Rothbart M, Yu J, Zhou SX, Grimm B, Luo MZ ( 2012). Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants. Plant Physiol 159, 118-130.
59 Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C ( 2012). Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17, 1124-1160.
doi: 10.1089/ars.2011.4327 pmid: 22531002
60 Meyer Y, Buchanan BB, Vignols F, Reichheld JP ( 2009). Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43, 335-367.
61 Michalska J, Zauber H, Buchanan BB, Cejudo FJ, Geigenberger P ( 2009). NTRC links built-in thioredoxin to light and sucrose in regulating starch synthesis in chloroplasts and amyloplasts. Proc Natl Acad Sci USA 106, 9908-9913.
doi: 10.1073/pnas.0903559106
62 Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez- Pérez ME, Francia F, Danon A, Marchand CH, Fermani S, Trost P, Lemaire SD ( 2013). Redox regulation of the Calvin-Benson cycle: something old, something new. Front Plant Sci 4, 470.
doi: 10.3389/fpls.2013.00470 pmid: 24324475
63 Montrichard F, Alkhalfioui F, Yano H, Vensel WH, Hurkman WJ, Buchanan BB ( 2009). Thioredoxin targets in plants: the first 30 years. J Proteomics 72, 452-474.
doi: 10.1016/j.jprot.2008.12.002 pmid: 19135183
64 Motohashi K, Hisabori T ( 2010). CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid Redox Signal 13, 1169-1176.
doi: 10.1089/ars.2010.3138 pmid: 20214498
65 Naranjo B, Díaz-Espejo A, Lindahl M, Cejudo FJ ( 2016 a). Type- f thioredoxins have a role in the short-term activation of carbon metabolism and their loss affects growth under short-day conditions in Arabidopsis thaliana.J Exp Bot 67, 1951-1964.
doi: 10.1093/jxb/erw017 pmid: 26842981
66 Naranjo B, Mignée C, Krieger-Liszkay A, Hornero-Méndez D, Gallardo-Guerrero L, Cejudo FJ, Lindahl M ( 2016 b). The chloroplast NADPH thioredoxin reductase C, NTRC, controls non-photochemical quenching of light energy and photosynthetic electron transport in Arabidopsis. Plant Cell Environ 39, 804-822.
doi: 10.1111/pce.12652 pmid: 26476233
67 Née G, Zaffagnini M, Trost P, Issakidis-Bourguet E ( 2009). Redox regulation of chloroplastic glucose-6-phosphate dehydrogenase: a new role for f-type thioredoxin. FEBS Lett 583, 2827-2832.
doi: 10.1016/j.febslet.2009.07.035 pmid: 19631646
68 Nikkanen L, Rintam?ki E ( 2014). Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos Trans Roy Soc Lond B Biol Sci 369, 20130224.
doi: 10.1098/rstb.2013.0224 pmid: 3949389
69 Nikkanen L, Toivola J, Diaz MG, Rintam?ki E ( 2017). Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos Trans Roy Soc Lond B Biol Sci 372, 20160474.
doi: 10.1098/rstb.2016.0474 pmid: 5566889
70 Nikkanen L, Toivola J, Rintam?ki E ( 2016). Crosstalk between chloroplast thioredoxin systems in regulation of photosynthesis. Plant Cell Environ 39, 1691-1705.
doi: 10.1111/pce.12718 pmid: 26831830
71 Ojeda V, Pérez-Ruiz JM, González M, Nájera VA, Sahrawy M, Serrato AJ, Geigenberger P, Cejudo FJ ( 2017). NADPH thioredoxin reductase C and thioredoxins act concertedly in seedling development. Plant Physiol 174, 1436-1448.
doi: 10.1104/pp.17.00481 pmid: 28500266
72 Okegawa Y, Motohashi K ( 2015). Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo.Plant J 84, 900-913.
doi: 10.1111/tpj.13049 pmid: 26468055
73 Onoa B, Schneider AR, Brooks MD, Grob P, Nogales E, Geissler PL, Niyogi KK, Bustamante C ( 2014). Atomic force microscopy of photosystem II and its unit cell clustering quantitatively delineate the mesoscale variability in Arabidopsis thylakoids. PLoS One 9, e101470.
doi: 10.1371/journal.pone.0101470 pmid: 25007326
74 Pérez-Ruiz JM, González M, Spínola MC, Sandalio LM, Cejudo FJ ( 2009). The quaternary structure of NADPH thioredoxin reductase C is redox-sensitive. Mol Plant 2, 457-467.
doi: 10.1093/mp/ssp011 pmid: 19825629
75 Pérez-Ruiz JM, Guinea M, Puerto-Galán L, Cejudo FJ ( 2014). NADPH thioredoxin reductase C is involved in redox regulation of the Mg-chelatase I subunit in Arabidopsis thaliana chloroplasts.Mol Plant 7, 1252-1255.
doi: 10.1093/mp/ssu032 pmid: 24658415
76 Pérez-Ruiz JM, Naranjo B, Ojeda V, Guinea M, Cejudo FJ ( 2017). NTRC-dependent redox balance of 2-Cys peroxiredoxins is needed for optimal function of the photosynthetic apparatus. Proc Natl Acad Sci USA 114, 12069-12074.
doi: 10.1073/pnas.1706003114 pmid: 29078290
77 Puerto-Galán L, Pérez-Ruiz JM, Guinea M, Cejudo FJ ( 2015). The contribution of NADPH thioredoxin reductase C (NTRC) and sulfiredoxin to 2-Cys peroxiredoxin overoxidation in Arabidopsis thaliana chloroplasts.J Exp Bot 66, 2957-2966.
doi: 10.1093/jxb/eru512 pmid: 4423512
78 Pulido P, Spínola MC, Kirchsteiger K, Guinea M, Pascual MB, Sahrawy M, Sandalio LM, Dietz KJ, González M, Cejudo FJ ( 2010). Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts.J Exp Bot 61, 4043-4054.
doi: 10.1093/jxb/erq218 pmid: 20813724
79 Rey P, Sanz-Barrio R, Innocenti G, Ksas B, Courteille A, Rumeau D, Issakidis-Bourguet E, Farran I ( 2013). Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants. Front Plant Sci 4, 390.
doi: 10.3389/fpls.2013.00390 pmid: 3797462
80 Richter AS, Grimm B ( 2013). Thiol-based redox control of enzymes involved in the tetrapyrrole biosynthesis pathway in plants. Front Plant Sci 4, 371.
doi: 10.3389/fpls.2013.00371 pmid: 3778395
81 Richter AS, Peter E, Rothbart M, Schlicke H, Toivola J, Rintam?ki E, Grimm B ( 2013). Posttranslational influence of NADPH-dependent thioredoxin reductase C on enzymes in tetrapyrrole synthesis. Plant Physiol 162, 63-73.
82 Rouhier N, Cerveau D, Couturier J, Reichheld JP, Rey P ( 2015). Involvement of thiol-based mechanisms in plant development. Biochim Biophys Acta 1850, 1479-1496.
doi: 10.1016/j.bbagen.2015.01.023 pmid: 25676896
83 Sanz-Barrio R, Corral-Martinez P, Ancin M, Segui- Simarro JM, Farran I ( 2013). Overexpression of plastidial thioredoxin f leads to enhanced starch accumulation in tobacco leaves. Plant Biotechnol J 11, 618-627.
doi: 10.1111/pbi.12052 pmid: 23398733
84 Sanz-Barrio R, Fernández-San Millán A, Carballeda J, Corral-Martínez P, Seguí-Simarro JM, Farran I ( 2012). Chaperone-like properties of tobacco plastid thioredoxins f and m. J Exp Bot 63, 365-379.
doi: 10.1093/jxb/err282 pmid: 21948853
85 Serrato AJ, Fernández-Trijueque J, Barajas-López JDD, Chueca A, Sahrawy M ( 2013). Plastid thioredoxins: a “one-for-all” redox-signaling system in plants. Front Plant Sci 4, 463.
doi: 10.3389/fpls.2013.00463 pmid: 3836485
86 Simionato D, Basso S, Zaffagnini M, Lana T, Marzotto F, Trost P, Morosinotto T ( 2015). Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase. FEBS Lett 589, 919-923.
doi: 10.1016/j.febslet.2015.02.033 pmid: 25747136
87 Stenbaek A, Jensen PE ( 2010). Redox regulation of chlorophyll biosynthesis. Phytochemistry 71, 853-859.
doi: 10.2307/3870056 pmid: 20417532
88 Strand DD, Fisher N, Davis GA, Kramer DM ( 2016). Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids. Biochim Biophys Acta 1857, 1-6.
doi: 10.1016/j.bbabio.2015.07.012 pmid: 26235611
89 Tarrago L, Laugier E, Zaffagnini M, Marchand CH, Le Maréchal P, Lemaire SD, Rey P ( 2010). Plant thioredoxin CDSP32 regenerates 1-cys methionine sulfoxide reductase B activity through the direct reduction of sulfenic acid. J Biol Chem 285, 14964-14972.
doi: 10.1074/jbc.M110.108373 pmid: 2865344
90 Thorm?hlen I, Meitzel T, Groysman J, ?chsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo FJ, Geigenberger P ( 2015). Thioredoxin f1 and NADPH-dependent thioredoxin reductase C have overlapping functions in regulating photosynthetic metabolism and plant growth in response to varying light conditions. Plant Physiol 169, 1766-1786.
91 Thorm?hlen I, Ruber J, von Roepenack-Lahaye E, Ehrlich SM, Massot V, Hümmer C, Tezycka J, Issakidis- Bourguet E, Geigenberger P ( 2013). Inactivation of thioredoxin f1 leads to decreased light activation of ADP- glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants. Plant Cell Environ 36, 16-29.
doi: 10.1111/j.1365-3040.2012.02549.x pmid: 22646759
92 Thorm?hlen I, Zupok A, Rescher J, Leger J, Weissenberger S, Groysman J, Orwat A, Chatel-Innocenti G, Issakidis-Bourguet E, Armbruster U, Geigenberger P ( 2017). Thioredoxins play a crucial role in dynamic acclimation of photosynthesis in fluctuating light. Mol Plant 10, 168-182.
doi: 10.1016/j.molp.2016.11.012
93 Tikkanen M, Grieco M, Kangasj?rvi S, Aro EM ( 2010). Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light. Plant Physiol 152, 723-735.
doi: 10.1104/pp.109.150250
94 Toivola J, Nikkanen L, Dahlstr?m KM, Salminen TA, Lepist? A, Vignols F, Rintam?ki E ( 2013). Overexpression of chloroplast NADPH-dependent thioredoxin reductase in Arabidopsis enhances leaf growth and elucidates in vivo function of reductase and thioredoxin domains.Front Plant Sci 4, 389.
doi: 10.3389/fpls.2013.00389 pmid: 3792407
95 Wang P, Liu J, Liu B, Da QE, Feng DR, Su JB, Zhang Y, Wang JF, Wang HB ( 2014). Ferredoxin: thioredoxin reductase is required for proper chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis thaliana.Mol Plant 7, 1586-1590.
doi: 10.1093/mp/ssu069 pmid: 24890758
96 Wang P, Liu J, Liu B, Feng DR, Da QE, Wang P, Shu SY, Su JB, Zhang Y, Wang Jf, Wang HB ( 2013). Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol 163, 1710-1728.
doi: 10.1104/pp.113.228353 pmid: 24151299
97 Wang XY, Dutton RJ, Beckwith J, Boyd D ( 2011). Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase.Antioxid Redox Signal 14, 1413-1420.
doi: 10.1089/ars.2010.3558 pmid: 3061198
98 Wulff RP, Lundqvist J, Rutsdottir G, Hansson A, Stenbaek A, Elmlund D, Elmlund H, Jensen PE, Hansson M ( 2011). The activity of barley NADPH-dependent thioredoxin reductase C is independent of the oligomeric state of the protein: tetrameric structure determined by cryoelec- tron microscopy. Biochemistry 50, 3713-3723.
doi: 10.1021/bi200058a pmid: 21456578
99 Yoshida K, Hara S, Hisabori T ( 2015). Thioredoxin selecti- vity for thiol-based redox regulation of target proteins in chloroplasts. J Biol Chem 290, 14278-14288.
100 Yoshida K, Hisabori T ( 2016). Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proc Natl Acad Sci USA 113, E3967-E3976.
doi: 10.1073/pnas.1604101113 pmid: 27335455
101 Yoshida K, Hisabori T ( 2017). Distinct electron transfer from ferredoxin-thioredoxin reductase to multiple thioredoxin isoforms in chloroplasts. Biochem J 474, 1347-1360.
doi: 10.1042/bcj20161089
102 Yoshida K, Matsuoka Y, Hara S, Konno H, Hisabori T ( 2014). Distinct redox behaviors of chloroplast thiol enzymes and their relationships with photosynthetic electron transport in Arabidopsis thaliana.Plant Cell Physiol 55, 1415-1425.
doi: 10.1093/pcp/pcu066 pmid: 24850837
[1] 青 平赵 fan shima Xi ruili yu tianwang Xiang ZHAO. Study of NPH3/RPT2-LIKE (NRL) Family Proteins in Phototropin Signaling Pathway [J]. Chin Bull Bot, 2020, 55(2): 0-0.
[2] Zhao Yuemei, Yang Zhenyan, Zhao Yongping, Li Xiaoling, Zhao Zhixin, Zhao Guifang. Chloroplast Genome Structural Characteristics and Phylogenetic Relationships of Oleaceae [J]. Chin Bull Bot, 2019, 54(4): 441-454.
[3] Zhang Jing,Hou Suiwen. Role of Post-translational Modification of Proteins in ABA Signaling Transduction [J]. Chin Bull Bot, 2019, 54(3): 300-315.
[4] Hu Ying, Wang Xi, Zhang Xinxin, Zhou Wei, Chen Xiaoyang, Hu Xinsheng. Advancing phylogeography with chloroplast DNA markers [J]. Biodiv Sci, 2019, 27(2): 219-234.
[5] Siqi Liang, Xianchun Zhang, Ran Wei. Integrative taxonomy resolved species delimitation in a fern complex: A case study of the Asplenium coenobiale complex [J]. Biodiv Sci, 2019, 27(11): 1205-1220.
[6] Dandan Lang,Min Tang,Xin Zhou. Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective [J]. Biodiv Sci, 2018, 26(5): 445-456.
[7] Zhang Xian-sheng. Chinese Scientists Have Made a Great Breakthrough in the Mechanism of Programmed Cell Death [J]. Chin Bull Bot, 2018, 53(4): 445-446.
[8] Zhao Xijuan, Qian Lichao, Liu Yule. Chinese Scientists Made Breakthrough Progresses in Plant Programmed Cell Death [J]. Chin Bull Bot, 2018, 53(4): 447-450.
[9] He Guangming, Deng Xingwang. Death Signal Transduction: Chloroplast-to-Mitochondrion Communication Regulates Programmed Cell Death in Plants [J]. Chin Bull Bot, 2018, 53(4): 441-444.
[10] Chen Keyi, Li Zhaona, Cheng Minmin, Zhao Yanghui, Zhou Mingbing, Yang Haiyun. Chloroplast Ultrastructure and Chlorophyll Fluorescence Characteristics of Three Cultivars of Pseudosasa japonica [J]. Chin Bull Bot, 2018, 53(4): 509-518.
[11] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br# [J]. Chin Bull Bot, 2018, 53(2): 264-275.
[12] Qiaoli Li, Na Yan, Qiong Song, Junzhan Guo. Complete Chloroplast Genome Sequence and Characteristics Analysis of Morus multicaulis [J]. Chin Bull Bot, 2018, 53(1): 94-103.
[13] Qiujie Zhou, Yacheng Cai, Wei Lun Ng, Wei Wu, Seping Dai, Feng Wang, Renchao Zhou. Molecular evidence for natural hybridization between two Melastoma species endemic to Hainan and their widespread congeners [J]. Biodiv Sci, 2017, 25(6): 638-646.
[14] Gan Huang, Xiao Wang, Xuefeng Jin, Xiaojing Wang, Yaqin Wang. GRXC9 Negatively Regulates Leaf Size in Arabidopsis [J]. Chin Bull Bot, 2017, 52(5): 550-559.
[15] Qing-Xian KONG, Jiang-Bao XIA, Zi-Guo ZHAO, Fan-Zhu QU. Effects of groundwater salinity on the characteristics of leaf photosynthesis and stem sap flow in Tamarix chinensis [J]. Chin J Plan Ecolo, 2016, 40(12): 1298-1309.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Xue-Hao YU Jie LI Ling-Li T. Advances in Study on Polyamines During Flowering and Fruit Setting and Development in Higher Plants[J]. Chin Bull Bot, 2003, 20(01): 36 -42 .
[2] Li Jing-shu. [J]. Chin Bull Bot, 1988, 5(03): 187 -191 .
[3] LIU Hong-Yan WANG Guang-Ce HOU He-Sheng. Fluorescence Specificity of PSⅠ Complex from Undaria pinnatifida[J]. Chin Bull Bot, 2004, 21(04): 444 -448 .
[4] Suxia Yuan;Yumei Liu*;Zhiyuan Fang;Limei Yang;Mu Zhuang;Yangyong Zhang;Peitian Sun. Plant Regeneration from Microspore-derived Embryos in Cabbage (Brassica oleracea var. capitata) and Broccoli (Brassica oleracea var. italica)[J]. Chin Bull Bot, 2010, 45(02): 226 -232 .
[5] Zhu Zhu;Xianghong Meng;Shiping Tian*. Effect of Preharvest Oxalic Acid Sprays on Calcium Content and Distribution in Mango Fruit Cells[J]. Chin Bull Bot, 2010, 45(01): 23 -28 .
[6] Liu Shi-rong, Wang Wen-zhang, Wang Ming-qi. The Characteristics of Energy in the Formative Process of Net Primary Productivity of Larch Artificial Forest Ecosystem[J]. Chin J Plan Ecolo, 1992, 16(3): 209 -219 .
[7] Gao Zhi-hui, Jiang Guo-hong, Xing Ai-jin, Yu Ming-rong. A Study on the Biomass of Metasequoia glyptostroboides plantation in Zhebei Plain[J]. Chin J Plan Ecolo, 1992, 16(1): 64 -71 .
[8] SHEN Qi, LIU Ke, LI Shi-Yu, ZHANG Jun, JIANG Yue-Ping, GE Ying, CHANG Jie. RELATIONSHIPS OF PLANT COMPOSITION,WATER LEVEL AND SOLAR RADIATION IN XIXI WETLAND, HANGZHOU, CHINA[J]. Chin J Plan Ecolo, 2008, 32(1): 114 -122 .
[9] Khajeddin SJ, Akbari M, Karimzadeh HR, Eghbal MK. DETECTING DESERTIFICATION PROCESSES USING TM AND ETM+ DATA, NORTH OF ISFAHAN, IRAN[J]. Chin J Plan Ecolo, 2008, 32(2): 328 -335 .
[10] ZHU Yan, YAO Xia, TIAN Yong-Chao, ZHOU Dong-Qin, LI Ying-Xue, CAO Wei-Xing. QUANTITATIVE RELATIONSHIP BETWEEN LEAF NITROGEN ACCUMULATION AND CANOPY REFLECTANCE SPECTRA IN RICE AND WHEAT[J]. Chin J Plan Ecolo, 2006, 30(6): 983 -990 .