Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (3): 417-432.DOI: 10.11983/CBB22065
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Zhenzhou Chu, Gulbar Yisilam, Zezhong Qu, Xinmin Tian()
Received:
2022-04-08
Accepted:
2022-09-19
Online:
2023-05-01
Published:
2023-05-17
Contact:
*E-mail: tianxm06@lzu.edu.cn
Zhenzhou Chu, Gulbar Yisilam, Zezhong Qu, Xinmin Tian. Comparative Analyses on the Chloroplast Genome of Three Sympatric Atraphaxis Species[J]. Chinese Bulletin of Botany, 2023, 58(3): 417-432.
Figure 1 The chloroplast genome of the three Atraphaxis species Genes on the outside of the large circle are transcribed clockwise and those on the inside are transcribed counterclockwise. The genes are color-coded based on their function. The dashed area represents the GC composition of the chloroplast genome. LSC: Large single copy region; SSC: Small single copy region; IR: Inverted repeat region. * Genes including introns
Atraphaxis spinosa | A. jrtyschensis | A. decipiens | |
---|---|---|---|
Gene size (bp) | 164106 | 164216 | 164187 |
LSC (bp) | 88812 | 88900 | 88870 |
SSC (bp) | 13456 | 13485 | 13485 |
IR (bp) | 30919 | 30916 | 30916 |
No. of genes | 133 | 133 | 133 |
No. of PCGs | 88 | 88 | 88 |
No. of tRNA | 37 | 37 | 37 |
No. of rRNA | 8 | 8 | 8 |
No. of duplicated genes | 20 | 20 | 20 |
GC content (%) | 37.4 | 37.5 | 37.5 |
Table 1 Basic information on the chloroplast genome of the three Atraphaxis species
Atraphaxis spinosa | A. jrtyschensis | A. decipiens | |
---|---|---|---|
Gene size (bp) | 164106 | 164216 | 164187 |
LSC (bp) | 88812 | 88900 | 88870 |
SSC (bp) | 13456 | 13485 | 13485 |
IR (bp) | 30919 | 30916 | 30916 |
No. of genes | 133 | 133 | 133 |
No. of PCGs | 88 | 88 | 88 |
No. of tRNA | 37 | 37 | 37 |
No. of rRNA | 8 | 8 | 8 |
No. of duplicated genes | 20 | 20 | 20 |
GC content (%) | 37.4 | 37.5 | 37.5 |
Gene category | Group of genes | Name of genes |
---|---|---|
Self-replication | Ribosomal RNAs | rrn4.5#, rrn5#, rrn16#, rrn23# |
Transfer RNAs | trnV-GAC#, trnl-GAU#*, trnA-UGC#*, trnR-ACG#, trnN- GUU#, trnL-CAA#, trnl-CAU#, trnH-GUG, trnK-UUU*, trnQ-UUG, trnS-GUC, trnG-UCC*, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnS-UGA, trnG-GCC, trnfM-CAU, trnS-GGA, trnT-UGU, trnL-UAA*, trnF-GAA, trnM-CAU, trnV-UAC*, trnW-CCA, trnP-UGG | |
Gene for photosynthesis | Small subunit of ribosomal proteins (SSU) | rps19, rps7#, rps12#*, rps15, rps2, rps14, rps4, rps18, rps3, rps11, rps16* |
Large subunit of ribosomal proteins (LSU) | rpl2#*, rpl23#, rpl32, rpl33, rpl20, rpl14, rpl16*, rpl36, rpl22 | |
RNA polymerase | rpoC2, rpoC1*, rpoB, rpoA | |
Photosystem I | psaC, psaA, psaB, psaJ, psaI | |
Photosystem II | psbK, psbI, psbM, psbD, psbC, psbZ, psbJ, psbL, psbF, psbE, psbB, psbT, psbH, psbA, psbN | |
Other genes | Subunits of cytochrome b/f complex | petN, petA, petL, petG, petB*, petD* |
Protease | clpP** | |
Subunits of ATP synthase | atpA, atpF*, atpH, atpI, atpE, atpB | |
Large subunit of Rubisco | rbcL | |
Subunits of NADH-dehydrogenase | ndhB#*, ndhF, ndhD, ndhC, ndhE, ndhG, ndhI, ndhA*, ndhH, ndhJ, ndhK, ndhC | |
Maturase | matK | |
Envelop membrane protein | cemA | |
Subunit of acetyl-CoA-carboxylase | accD | |
C-type cytochrome synthesis gene | ccsA | |
Translational initiation factor | infA | |
Gene of unknown function | Hypothetical chloroplast reading frames (ycf) | ycf1#, ycf2#, ycf3**, ycf4, ycf15 |
Table 2 Gene annotation in the chloroplast genome of the three Atraphaxis species
Gene category | Group of genes | Name of genes |
---|---|---|
Self-replication | Ribosomal RNAs | rrn4.5#, rrn5#, rrn16#, rrn23# |
Transfer RNAs | trnV-GAC#, trnl-GAU#*, trnA-UGC#*, trnR-ACG#, trnN- GUU#, trnL-CAA#, trnl-CAU#, trnH-GUG, trnK-UUU*, trnQ-UUG, trnS-GUC, trnG-UCC*, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnS-UGA, trnG-GCC, trnfM-CAU, trnS-GGA, trnT-UGU, trnL-UAA*, trnF-GAA, trnM-CAU, trnV-UAC*, trnW-CCA, trnP-UGG | |
Gene for photosynthesis | Small subunit of ribosomal proteins (SSU) | rps19, rps7#, rps12#*, rps15, rps2, rps14, rps4, rps18, rps3, rps11, rps16* |
Large subunit of ribosomal proteins (LSU) | rpl2#*, rpl23#, rpl32, rpl33, rpl20, rpl14, rpl16*, rpl36, rpl22 | |
RNA polymerase | rpoC2, rpoC1*, rpoB, rpoA | |
Photosystem I | psaC, psaA, psaB, psaJ, psaI | |
Photosystem II | psbK, psbI, psbM, psbD, psbC, psbZ, psbJ, psbL, psbF, psbE, psbB, psbT, psbH, psbA, psbN | |
Other genes | Subunits of cytochrome b/f complex | petN, petA, petL, petG, petB*, petD* |
Protease | clpP** | |
Subunits of ATP synthase | atpA, atpF*, atpH, atpI, atpE, atpB | |
Large subunit of Rubisco | rbcL | |
Subunits of NADH-dehydrogenase | ndhB#*, ndhF, ndhD, ndhC, ndhE, ndhG, ndhI, ndhA*, ndhH, ndhJ, ndhK, ndhC | |
Maturase | matK | |
Envelop membrane protein | cemA | |
Subunit of acetyl-CoA-carboxylase | accD | |
C-type cytochrome synthesis gene | ccsA | |
Translational initiation factor | infA | |
Gene of unknown function | Hypothetical chloroplast reading frames (ycf) | ycf1#, ycf2#, ycf3**, ycf4, ycf15 |
Figure 2 Analysis of the repeat sequences in the chloroplast genome of the three Atraphaxis species (A) Total number of the forward repeats, reverse repeats and palindromic repeats; (B) Number of the forward repeats; (C) Number of the palindromic repeats; (D) Number of the reverse repeats
Figure 3 Simple sequence repeats (SSRs) in the chloroplast genome of the three Atraphaxis species (A) Distribution of different SSR types; (B) Frequency of different type of SSRs
Figure 4 The codon usage bias of the chloroplast genomes in the three Atraphaxis species Columns above each amino acid from left to right are A. spinosa, A. jrtyschensis and A. decipiens, respectively. RSCU: Relative synonymous codon usage
Figure 6 The non-synonymous-to-synonymous substitution (Ka/Ks) ratios of 80 protein-coding genes among the three Atraphaxis species (A) A. spinosa vs A. jrtyschensis; (B) A. spinosa vs A. decipiens
Figure 7 Comparison of the border positions of LSC, SSC, and IR regions among the seven species of the Polygonaceae LSC, SSC and IR are the same as shown in Figure 1. JLB: Junction line between LSC and IRb; JSB: Junction line between IRb and SSC; JSA: Junction line between SSC and IRa; JLA: Junction line between IRa and LSC.
Figure 8 mVISTA sequence analysis on the chloroplast genome among seven species of the Polygonaceae The gray lines show the gene orientation and the position in the LSC, SSC, and IR regions. Sequence identity is shown as a percentage between 50%-100% on y-axis. Genome regions are distinguished by different colors.
Figure 9 Phylogenetic tree of 37 species in the Polygonaceae based on the protein coding sequences in their chloroplast genomes (A) The Bayesian inference (BI) tree with posterior probabilities values on the branches; (B) Maximum likelihood (ML) tree with bootstrap values on the branches. Limonium aureum is used as outgroup. The red color represents the three species in this study. The purple color represents the species of Trib. Polygoneae, and the green color represents the species of Trib. Atraphaxideae.
Figure 10 Phylogenetic tree of 36 species in the Polygonaceae based on Bayesian inference (BI) with a combination of high variance loci of ycf1, ndhA, atpA and atpI Limonium aureum is used as outgroup.
[1] | 艾对元 (2008). 基因组中重复序列的意义. 生命的化学 28, 343-345. |
[2] | 李安仁, 高作经, 毛祖美, 刘玉兰 (1998). 中国植物志, 第25卷第1分册. 北京: 科学出版社. pp. 133-141. |
[3] |
李巧丽, 延娜, 宋琼, 郭军战 (2018). 鲁桑叶绿体基因组序列及特征分析. 植物学报 53, 94-103.
DOI |
[4] | 马克平 (1993). 试论生物多样性的概念. 生物多样性 1, 20-22. |
[5] | 王成龙 (2018). 野生荞麦叶绿体基因组比较分析及荞麦属植物系统进化研究. 博士论文. 雅安: 四川农业大学. pp. 52-53. |
[6] | 王继玥, 白禹, 石登红, 刘燕 (2021). 桑科植物叶绿体基因组研究进展. 北方园艺 (8), 124-130. |
[7] | 徐惠梅, 杨惠芳, 靳春霞 (2008). 沙木蓼和杨柴治沙造林试验. 现代农业科技 (19), 39, 41. |
[8] | 杨昌友 (1984). 新疆木蓼属新种. 植物研究 4(2), 150-151. |
[9] | 杨梦婷, 黄洲, 干建平, 徐君驰, 庞基良 (2019). SSR分子标记的研究进展. 杭州师范大学学报(自然科学版) 18, 429-436. |
[10] |
Amiryousefi A, Hyvönen J, Poczai P (2018). IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34, 3030-3031.
DOI PMID |
[11] | Bao BJ, Li AJ (1993). A study of the genus Atraphaxis in China and the system of Atraphaxideae (Polygonaceae). J Syst Evol 31, 127-139. |
[12] | Behura SK, Severson DW (2013). Codon usage bias: causative factors, quantification methods and genome- wide patterns: with emphasis on insect genomes. Biol Rev 88, 49-61. |
[13] |
Burke JM, Sanchez A, Kron K, Luckow M (2010). Placing the woody tropical genera of Polygonaceae: a hypothesis of character evolution and phylogeny. Am J Bot 97, 1377-1390.
DOI PMID |
[14] |
Cosner ME, Raubeson LA, Jansen RK (2004). Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evolut Biol 4, 27.
DOI URL |
[15] | Curci PL, De Paola D, Danzi D, Vendramin GG, Sonnante G (2015). Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS One 10, e0120589. |
[16] |
Daniell H, Lin CS, Yu M, Chang WJ (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17, 134.
DOI PMID |
[17] | Dierckxsens N, Mardulyn P, Smits G (2017). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45, e18. |
[18] | Doyle JJ, Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19, 11-15. |
[19] | Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res 32, W273-W279. |
[20] |
Gandhi SG, Awasthi P, Bedi YS (2010). Analysis of SSR dynamics in chloroplast genomes of Brassicaceae family. Bioinformation 5, 16-20.
DOI PMID |
[21] |
Gao FL, Chen CJ, Arab DA, Du ZG, He YH, Ho SYW (2019). EasyCodeML: a visual tool for analysis of selection using CodeML. Ecol Evol 9, 3891-3898.
DOI |
[22] |
Gao XY, Zhang X, Meng HH, Li J, Zhang D, Liu CN (2018). Comparative chloroplast genomes of Paris sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genomics 19, 878.
DOI |
[23] | Greiner S, Lehwark P, Bock R (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47, W59-W64. |
[24] |
Hershberg R, Petrov DA (2008). Selection on codon bias. Annu Rev Genet 42, 287-299.
DOI PMID |
[25] |
Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell S (2008). Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48, 1204-1217.
DOI URL |
[26] | Jia J, Xue QZ (2009). Codon usage biases of transposable elements and host nuclear genes in Arabidopsis thaliana and Oryza sativa. Genom Proteomics Bioinf 7, 175-184. |
[27] |
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haesele A, Jermiin LS (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14, 587-589.
DOI PMID |
[28] |
Katoh K, Rozewicki J, Yamada KD (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20, 1160-1166.
DOI PMID |
[29] |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649.
DOI PMID |
[30] | Khan A, Asaf S, Khan AL, Al-Harrasi A, Al-Sudairy O, AbdulKareem NM, Khan A, Shehzad T, Alsaady N, Al-Lawati A, Al-Rawahi A, Shinwari ZK (2019). First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: myrrh producing trees. PLoS One 14, e0208511. |
[31] |
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001). REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29, 4633-4642.
DOI PMID |
[32] |
Li L, Hu YF, He M, Zhang B, Wu W, Cai PM, Huo D, Hong YC (2021). Comparative chloroplast genomes: insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia. BMC Genomics 22, 138.
DOI PMID |
[33] |
Li X, Li YF, Zang MY, Li MZ, Fang YM (2018). Complete chloroplast genome sequence and phylogenetic analysis of Quercus acutissima. Int J Mol Sci 19, 2443.
DOI URL |
[34] |
Librado P, Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451-1452.
DOI PMID |
[35] | Lyu XL, Liu Y (2020). Nonoptimal codon usage is critical for protein structure and function of the master general amino acid control regulator CPC-1. mBio 11, e02605-20. |
[36] |
Marais G, Mouchiroud D, Duret L (2001). Does recombination improve selection on codon usage? Lessons from nematode and fly complete genomes. Proc Natl Acad Sci USA 98, 5688-5692.
DOI PMID |
[37] | Qian J, Song JY, Gao HH, Zhu YJ, Xu J, Pang XH, Yao H, Sun C, Li XE, Li CY, Liu JY, Xu HB, Chen SL (2013). The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One 8, e57607. |
[38] |
Saski C, Lee SB, Daniell H, Wood TC, Tomkins J, Kim HG, Jansen RK (2005). Complete chloroplast genome sequence of Glycine max and comparative analyses with other legume genomes. Plant Mol Biol 59, 309-322.
DOI URL |
[39] |
Sun YX, Zhang ML (2012). Molecular phylogeny of tribe Atraphaxideae (Polygonaceae) evidenced from five cpDNA genes. J Arid Land 4, 180-190.
DOI |
[40] |
Tamura K, Stecher G, Kumar S (2021). MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38, 3022-3027.
DOI PMID |
[41] |
Thiel T, Michalek W, Varshney R, Graner A (2003). Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 106, 411-422.
DOI PMID |
[42] | Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017). GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45, W6-W11. |
[43] |
Wang QY, Yuan ZY, Zhang Y, Mamtimin S, Tian XM (2018a). The complete chloroplast genome of Atraphaxis jrtyschensis (Polygonaceae), an endemic and endangered desert shrub to Xinjiang, China. Mitochondrial DNA Part B 3, 1104-1105.
DOI URL |
[44] |
Wang WC, Chen SY, Zhang XZ (2018b). Whole-genome comparison reveals divergent IR borders and mutation hotspots in chloroplast genomes of herbaceous bamboos (Bambusoideae: Olyreae). Molecules 23, 1537.
DOI URL |
[45] | Wang XH (2018). Phytochemical Investigations of Atraphaxis spinosa and Camphorosma lessingii Litv. Master's thesis. Tianjin: Tianjin University. pp. 41-66. |
[46] |
Wanga VO, Dong X, Oulo MA, Mkala EM, Yang JX, Onjalalaina GE, Gichua MK, Kirika PM, Gituru RW, Hu GW, Wang QF (2021). Complete chloroplast genomes of Acanthochlamys bracteata (China) and Xerophyta (Africa) (Velloziaceae): comparative genomics and phylogenomic placement. Front Plant Sci 12, 691833.
DOI URL |
[47] |
Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D (2011). The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76, 273-297.
DOI PMID |
[48] |
Wu S, Chen JY, Li Y, Liu A, Li A, Yin M, Shrestha N, Liu JQ, Ren GP (2021). Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives. BMC Plant Biol 21, 421.
DOI |
[49] |
Xie DF, Yu Y, Deng YQ, Li J, Liu HY, Zhou SD, He XJ (2018). Comparative analysis of the chloroplast genomes of the Chinese endemic genus Urophysa and their contribution to chloroplast phylogeny and adaptive evolution. Int J Mol Sci 19, 1847.
DOI URL |
[50] | Xue JH, Wang S, Zhou SL (2012). Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am J Bot 99, e240-e244. |
[51] |
Yang BB, Li LD, Liu JQ, Zhang LS (2021). Plastome and phylogenetic relationship of the woody buckwheat Fagopyrum tibeticum in the Qinghai-Tibet Plateau. Plant Diversity 43, 198-205.
DOI URL |
[52] | Yang Y, Dang YY, Li Q, Lu JJ, Li XW, Wang YT (2014). Complete chloroplast genome sequence of poisonous and medicinal plant Datura stramonium: organizations and implications for genetic engineering. PLoS One 9, e110656. |
[53] |
Yang ZH (2007). PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24, 1586-1591.
DOI PMID |
[54] | Yurtseva OV, Kuznetsova OI, Mavrodieva ME, Mavrodiev EV (2016). What is Atraphaxis L. (Polygonaceae, Polygoneae): cryptic taxa and resolved taxonomic complexity instead of the formal lumping and the lack of morphological synapomorphies. Peer J 4, e1977. |
[55] |
Zhang D, Gao FL, Jakovlić I, Zou H, Zhang J, Li WX, Wang GT (2020). PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol Ecol Resour 20, 348-355.
DOI PMID |
[56] | Zhou JH, Ding YZ, He Y, Chu YF, Zhao P, Ma LY, Wang XJ, Li XR, Liu YS (2014). The effect of multiple evolutionary selections on synonymous codon usage of genes in the Mycoplasma bovis genome. PLoS One 9, e108949. |
[57] |
Zhou T, Chen C, Wei Y, Chang YX, Bai GQ, Li ZH, Kanwal N, Zhao GF (2016). Comparative transcriptome and chloroplast genome analyses of two related Dipteronia species. Front Plant Sci 7, 1512.
PMID |
[1] | Hua He, DunYan Tan, Xiaochen Yang. Cryptic dioecy in angiosperms: diversity, phylogeny and evolutionary significance [J]. Biodiv Sci, 2024, 32(6): 24149-. |
[2] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[3] | Yanwen Lv, Ziyun Wang, Yu Xiao, Zihan He, Chao Wu, Xinsheng Hu. Advances in lineage sorting theories and their detection methods [J]. Biodiv Sci, 2024, 32(4): 23400-. |
[4] | Zhi Yang, Yong Yang. Research Advances on Nuclear Genomes of Economically Important Trees of Lauraceae [J]. Chinese Bulletin of Botany, 2024, 59(2): 302-318. |
[5] | Zhizhong Li, Shuai Peng, Qingfeng Wang, Wei Li, Shichu Liang, Jinming Chen. Cryptic diversity of the genus Ottelia in China [J]. Biodiv Sci, 2023, 31(2): 22394-. |
[6] | Huiyin Song, Zhengyu Hu, Guoxiang Liu. Assessing advances in taxonomic research on Chlorellaceae (Chlorophyta) [J]. Biodiv Sci, 2023, 31(2): 22083-. |
[7] | Jinbo Bao, Zhijie Ding, Haoyu Miao, Xueli Li, Shuxian Ren, Ruoyan Jiao, Hao Li, Qianqian Deng, Yingzi Li, Xinmin Tian. Analysis of Chloroplast Genomes of Aleurites moluccana [J]. Chinese Bulletin of Botany, 2023, 58(2): 248-260. |
[8] | Ting Wang, Jiangping Shu, Yufeng Gu, Yanqing Li, Tuo Yang, Zhoufeng Xu, Jianying Xiang, Xianchun Zhang, Yuehong Yan. Insight into the studies on diversity of lycophytes and ferns in China [J]. Biodiv Sci, 2022, 30(7): 22381-. |
[9] | Jianming Wang, Mengjun Qu, Yin Wang, Yiming Feng, Bo Wu, Qi Lu, Nianpeng He, Jingwen Li. The drivers of plant taxonomic, functional, and phylogenetic β-diversity in the gobi desert of northern Qinghai-Tibet Plateau [J]. Biodiv Sci, 2022, 30(6): 21503-. |
[10] | XIANG Wei, HUANG Dong-Liu, ZHU Shi-Dan. Absorptive root anatomical traits of 26 tropical and subtropical fern species [J]. Chin J Plant Ecol, 2022, 46(5): 593-601. |
[11] | WANG Chun-Cheng, ZHANG Yun-Ling, MA Song-Mei, HUANG Gang, ZHANG Dan, YAN Han. Phylogeny and species differentiation of four wild almond species of subgen. Amygdalus in China [J]. Chin J Plant Ecol, 2021, 45(9): 987-995. |
[12] | Yangkang Chen, Yi Wang, Jialiang Li, Wentao Wang, Duanyu Feng, Kangshan Mao. Principles, error sources and application suggestions of prevailing molecular dating methods [J]. Biodiv Sci, 2021, 29(5): 629-646. |
[13] | Qifeng Lu, Zhihuan Huang, Wenhua Luo. Characterization of complete chloroplast genome in Firmiana kwangsiensis and F. danxiaensis with extremely small populations [J]. Biodiv Sci, 2021, 29(5): 586-595. |
[14] | Zhaoyu Zhang, Qingyun Wang, Lei Shi, Wengang Yu, Yongqing Zhang, Hongxia Cui. Secondary Metabolites of Syringa and the Linking with Phylogenetic Evolution and Geographical Distributions [J]. Chinese Bulletin of Botany, 2021, 56(4): 470-479. |
[15] | Kai Fan, Fangting Ye, Zhijun Mao, Xinfeng Pan, Zhaowei Li, Wenxiong Lin. Comparative Genomics of the Small Heat Shock Protein Family in Angiosperms [J]. Chinese Bulletin of Botany, 2021, 56(3): 245-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||