Chinese Bulletin of Botany ›› 2025, Vol. 60 ›› Issue (2): 271-282.DOI: 10.11983/CBB24083 cstr: 32102.14.CBB24083
• SPECIAL TOPICS • Previous Articles Next Articles
Linfeng Xia, Rui Li, Haizheng Wang, Daling Feng*(), Chunyang Wang*(
)
Received:
2024-05-30
Accepted:
2024-12-14
Online:
2025-03-10
Published:
2024-12-17
Contact:
Daling Feng, Chunyang Wang
Linfeng Xia, Rui Li, Haizheng Wang, Daling Feng, Chunyang Wang. Research Advances and Prospects in Charophytes Genomics[J]. Chinese Bulletin of Botany, 2025, 60(2): 271-282.
Species | Class | Order | Family |
---|---|---|---|
Zygnema circumcarinatum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Z. cf. cylindricum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Mesotaenium endlicherianum | Zygnematophyceae | Zygnematales | Mesotaeniaceae |
Spirogloea muscicola | Zygnematophyceae | Spirogloeales | Spirogloeaceae |
Closterium peracerosum-strigosum-littorale complex | Zygnematophyceae | Desmidiales | Closteriaceae |
Penium margaritaceum | Zygnematophyceae | Desmidiales | Peniaceae |
Chara braunii | Charophyceae | Charales | Characeae |
Klebsormidium nitens | Klebsormidiophyceae | Klebsormidiales | Klebsormidiaceae |
Chlorokybus atmophyticus | Chlorokybophyceae | Chlorokybales | Chlorokybaceae |
Mesostigma viride | Mesostigmatophyceae | Mesostigmatales | Mesostigmataceae |
Table 1 Charophytes with fully sequenced genomes and their taxonomic hierarchy
Species | Class | Order | Family |
---|---|---|---|
Zygnema circumcarinatum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Z. cf. cylindricum | Zygnematophyceae | Zygnematales | Zygnemataceae |
Mesotaenium endlicherianum | Zygnematophyceae | Zygnematales | Mesotaeniaceae |
Spirogloea muscicola | Zygnematophyceae | Spirogloeales | Spirogloeaceae |
Closterium peracerosum-strigosum-littorale complex | Zygnematophyceae | Desmidiales | Closteriaceae |
Penium margaritaceum | Zygnematophyceae | Desmidiales | Peniaceae |
Chara braunii | Charophyceae | Charales | Characeae |
Klebsormidium nitens | Klebsormidiophyceae | Klebsormidiales | Klebsormidiaceae |
Chlorokybus atmophyticus | Chlorokybophyceae | Chlorokybales | Chlorokybaceae |
Mesostigma viride | Mesostigmatophyceae | Mesostigmatales | Mesostigmataceae |
Species (strain) | Predicted genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Zygnema circumcarinatum (SAG 698-1b) | 66.7 | 71.0 | 90 (20) | 3958.3 | 50.0 | 16617 | Feng et al., |
Z. circumcarinatum (UTEX 1559) | 66.3 | 71.3 | 614 | 3970.3 | 49.5 | 18062 | Feng et al., |
Z. circumcarinatum (UTEX 1560) | 67.8 | 67.3 | 514 | 3792.7 | 49.5 | 18654 | Feng et al., |
Z. cf. cylindricum (SAG 698-1a_XF) | 322.5 | 359.8 | 3587 | 213.9 | 40.0 | 45178 | Feng et al., |
Mesotaenium endlicherianum (SAG 12.97) | 163.0 | 173.8 | 13942 | 448.4 | 52.0 | 11080 | Cheng et al., |
Spirogloea muscicola (CCAC 0214) | 174.0 | 171.1 | 19678 | 566 | 56.5 | 27137 | Cheng et al., |
Closterium peracerosum-strigosum-littorale complex (NIES-67) | 365.0 | 360.0 | NA | 351* | 56.1 | 29752 | Sekimoto et al., |
C. peracerosum-strigosum-littorale complex (NIES-68) | 361.0 | 337.0 | NA | 275* | 55.8 | 28427 | Sekimoto et al., |
Penium margaritaceum (SAG 2640) | 4700.0 | 3661.0 | 332786 | 116.1 | 51.0 | 52333 | Jiao et al., |
Table 2 Genome data for the Zygnematophyceae of charophytes
Species (strain) | Predicted genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Zygnema circumcarinatum (SAG 698-1b) | 66.7 | 71.0 | 90 (20) | 3958.3 | 50.0 | 16617 | Feng et al., |
Z. circumcarinatum (UTEX 1559) | 66.3 | 71.3 | 614 | 3970.3 | 49.5 | 18062 | Feng et al., |
Z. circumcarinatum (UTEX 1560) | 67.8 | 67.3 | 514 | 3792.7 | 49.5 | 18654 | Feng et al., |
Z. cf. cylindricum (SAG 698-1a_XF) | 322.5 | 359.8 | 3587 | 213.9 | 40.0 | 45178 | Feng et al., |
Mesotaenium endlicherianum (SAG 12.97) | 163.0 | 173.8 | 13942 | 448.4 | 52.0 | 11080 | Cheng et al., |
Spirogloea muscicola (CCAC 0214) | 174.0 | 171.1 | 19678 | 566 | 56.5 | 27137 | Cheng et al., |
Closterium peracerosum-strigosum-littorale complex (NIES-67) | 365.0 | 360.0 | NA | 351* | 56.1 | 29752 | Sekimoto et al., |
C. peracerosum-strigosum-littorale complex (NIES-68) | 361.0 | 337.0 | NA | 275* | 55.8 | 28427 | Sekimoto et al., |
Penium margaritaceum (SAG 2640) | 4700.0 | 3661.0 | 332786 | 116.1 | 51.0 | 52333 | Jiao et al., |
Species (strain) | Predicting genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Chara braunii (S276) | 2355.0 | 1751.5 | 11654 | 2260 | 48.3 | 23546 | Nishiyama et al., |
Klebsormidium nitens (NIES-2285) | 117.1±21.8 | 104.0 | 1812 | 134.9 | 52.4 | 16215 | Hori et al., |
Chlorokybus atmophyticus (CCAC 0220) | 85.0 | 74.0 | 3836 | 752.4 | 51.5 | 9066 | Wang et al., |
Mesostigma viride (CCAC 1140) | 329.0 | 281.0 | 6924 | 113.2 | 55.0 | 9198 | Wang et al., |
M. viride (NIES-296) | NA | 442.6 | 2363 | 2558.7 | 54.5 | 24431 | Liang et al., |
Table 3 Genome data for four charophyte species outside of the Zygnematophyceae
Species (strain) | Predicting genome size (Mb) | Assembly size (Mb) | Number of scaffold | Scaffold N50 (kb) | GC content (%) | Number of gene | Reference |
---|---|---|---|---|---|---|---|
Chara braunii (S276) | 2355.0 | 1751.5 | 11654 | 2260 | 48.3 | 23546 | Nishiyama et al., |
Klebsormidium nitens (NIES-2285) | 117.1±21.8 | 104.0 | 1812 | 134.9 | 52.4 | 16215 | Hori et al., |
Chlorokybus atmophyticus (CCAC 0220) | 85.0 | 74.0 | 3836 | 752.4 | 51.5 | 9066 | Wang et al., |
Mesostigma viride (CCAC 1140) | 329.0 | 281.0 | 6924 | 113.2 | 55.0 | 9198 | Wang et al., |
M. viride (NIES-296) | NA | 442.6 | 2363 | 2558.7 | 54.5 | 24431 | Liang et al., |
[1] | Adamowski M, Friml J (2015). PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27, 20-32. |
[2] |
Akatsuka S, Sekimoto H, Iwai H, Fukumoto RH, Fujii T (2003). Mucilage secretion regulated by sex pheromones in Closterium peracerosum-strigosum-littorale complex. Plant Cell Physiol 44, 1081-1087.
PMID |
[3] |
Ariel FD, Manavella PA, Dezar CA, Chan RL (2007). The true story of the HD-Zip family. Trends Plant Sci 12, 419-426.
DOI PMID |
[4] | Bierenbroodspot MJ, Darienko T, de Vries S, Fürst- Jansen JMR, Buschmann H, Pröschold T, Irisarri I, de Vries J (2024). Phylogenomic insights into the first multicellular streptophyte. Curr Biol 34, 670-681. |
[5] |
Chardin C, Girin T, Roudier F, Meyer C, Krapp A (2014). The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development. J Exp Bot 65, 5577-5587.
DOI PMID |
[6] |
Cheng SF, Xian WF, Fu Y, Marin B, Keller J, Wu T, Sun WJ, Li XL, Xu Y, Zhang Y, Wittek S, Reder T, Günther G, Gontcharov A, Wang SB, Li LZ, Liu X, Wang J, Yang HM, Xu X, Delaux PM, Melkonian B, Wong GKS, Melkonian M (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179, 1057-1067.
DOI PMID |
[7] |
Dadras A, Fürst-Jansen JMR, Darienko T, Krone D, Scholz P, Sun SQ, Herrfurth C, Rieseberg TP, Irisarri I, Steinkamp R, Hansen M, Buschmann H, Valerius O, Braus GH, Hoecker U, Feussner I, Mutwil M, Ischebeck T, de Vries S, Lorenz M, de Vries J (2023). Environmental gradients reveal stress hubs pre-dating plant terrestrialization. Nat Plants 9, 1419-1438.
DOI PMID |
[8] |
de Vries J, Archibald JM (2018). Plant evolution: landmarks on the path to terrestrial life. New Phytol 217, 1428-1434.
DOI PMID |
[9] |
Dehors J, Mareck A, Kiefer-Meyer MC, Menu-Bouaouiche L, Lehner A, Mollet JC (2019). Evolution of cell wall polymers in tip-growing land plant gametophytes: composition, distribution, functional aspects and their remodeling. Front Plant Sci 10, 441.
DOI PMID |
[10] | Delwiche CF, Cooper ED (2015). The evolutionary origin of a terrestrial flora. Curr Biol 25, R899-R910. |
[11] |
Domozych DS, Bagdan K (2022). The cell biology of charophytes: exploring the past and models for the future. Plant Physiol 190, 1588-1608.
DOI PMID |
[12] | Fan Y, Yan J, Lai DL, Yang H, Xue GX, He AL, Guo TR, Chen L, Cheng XB, Xiang DB, Ruan JJ, Cheng JP (2021). Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 22, 509. |
[13] | Feng XH, Zheng JF, Irisarri I, Yu HH, Zheng B, Ali Z, de Vries S, Keller J, Fürst-Jansen JMR, Dadras A, Zegers JMS, Rieseberg TP, Dhabalia Ashok A, Darienko T, Bierenbroodspot MJ, Gramzow L, Petroll R, Haas FB, Fernandez-Pozo N, Nousias O, Li T, Fitzek E, Grayburn WS, Rittmeier N, Permann C, Rümpler F, Archibald JM, Theißen G, Mower JP, Lorenz M, Buschmann H, von Schwartzenberg K, Boston L, Hayes RD, Daum C, Barry K, Grigoriev IV, Wang XY, Li FW, Rensing SA, Ben Ari J, Keren N, Mosquna A, Holzinger A, Delaux PM, Zhang C, Huang JL, Mutwil M, de Vries J, Yin YB (2024). Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nat Genet 56, 1018-1031. |
[14] | Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009). In vitro reconstitution of an abscisic acid signaling pathway. Nature 462, 660-664. |
[15] |
Fürst-Jansen JMR, de Vries S, de Vries J (2020). Evo- physio: on stress responses and the earliest land plants. J Exp Bot 71, 3254-3269.
DOI PMID |
[16] | Fürst-Jansen JMR, de Vries S, Lorenz M, von Schwartzenberg K, Archibald JM, de Vries J,(2022). Submergence of the filamentous Zygnematophyceae Mougeotia induces differential gene expression patterns associated with core metabolism and photosynthesis. Protoplasma 259, 1157-1174. |
[17] |
Gidda SK, Park S, Pyc M, Yurchenko O, Cai YQ, Wu P, Andrews DW, Chapman KD, Dyer JM, Mullen RT (2016). Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells. Plant Physiol 170, 2052-2071.
DOI PMID |
[18] | Gong SD, Xie WS, Zhao RP, Feng KN, Chen LL (2024). Progress and prospect of plant telomere-to-telomere (T2T) genome. Genomics Appl Biol 43, 933-942. (in Chinese) |
宫少达, 谢文召, 赵如鹏, 冯康宁, 陈玲玲 (2024). 植物端粒到端粒(T2T)基因组研究进展与展望. 基因组学与应用生物学 43, 933-942. | |
[19] | Greene EL (1887). Bibliographical notes on well known plants. I. Bull Torrey Bot Club 14, 136-139. |
[20] | Guiry MD (2021). AlgaeBase: a global database for algae. Curr Sci India 121, 10-11. |
[21] | Guiry MD, Guiry GM (2025). AlgaeBase, world-wide electronic publication. Galway: National University of Ireland. https://www.algaebase.org. 2025-02-14. |
[22] | Hamilton JP, Buell CR (2012). Advances in plant genome sequencing. Plant J 70, 177-190. |
[23] | Han XJ, He YY, Cui XB (2008). Economic value and application prospects of Charophyte algae. China Sci Technol Inform 10, 70-71. (in Chinese) |
韩晓静, 何雨原, 崔晓波 (2008). 轮藻植物的经济价值及应用前景. 中国科技信息 10, 70-71. | |
[24] | Heß D, Heise CM, Schubert H, Hess WR, Hagemann M (2023). The impact of salt stress on the physiology and the transcriptome of the model streptophyte green alga Chara braunii. Physiol Plant 175, e14123. |
[25] | Hess S, Williams SK, Busch A, Irisarri I, Delwiche CF, de Vries S, Darienko T, Roger AJ, Archibald JM, Buschmann H, von Schwartzenberg K, de Vries J,(2022). A phylogenomically informed five-order system for the closest relatives of land plants. Curr Biol 32, 4473-4482. |
[26] | Hori K, Maruyama F, Fujisawa T, Togashi T, Yamamoto N, Seo M, Sato S, Yamada T, Mori H, Tajima N, Moriyama T, Ikeuchi M, Watanabe M, Wada H, Kobayashi K, Saito M, Masuda T, Sasaki-Sekimoto Y, Mashiguchi K, Awai K, Shimojima M, Masuda S, Iwai M, Nobusawa T, Narise T, Kondo S, Saito H, Sato R, Murakawa M, Ihara Y, Oshima-Yamada Y, Ohtaka K, Satoh M, Sonobe K, Ishii M, Ohtani R, Kanamori-Sato M, Honoki R, Miyazaki D, Mochizuki H, Umetsu J, Higashi K, Shibata D, Kamiya Y, Sato N, Nakamura Y, Tabata S, Ida S, Kurokawa K, Ohta H (2014). Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun 5, 3978. |
[27] | Horňák M (2022). Land Plant Terrestrialization—New Insights from Genomes of Charophyte Algae. Bachelor’s thesis. Prague: Charles University. |
[28] |
Huang Y, He JX, Xu YT, Zheng WK, Wang SH, Chen P, Zeng B, Yang SZ, Jiang XL, Liu ZS, Wang L, Wang X, Liu SJ, Lu ZH, Liu ZA, Yu HW, Yue JQ, Gao JY, Zhou XY, Long CR, Zeng XL, Guo YJ, Zhang WF, Xie ZZ, Li CL, Ma ZC, Jiao WB, Zhang F, Larkin RM, Krueger RR, Smith MW, Ming R, Deng XX, Xu Q (2023). Pangenome analysis provides insight into the evolution of the orange subfamily and a key gene for citric acid accumulation in citrus fruits. Nat Genet 55, 1964-1975.
DOI PMID |
[29] | Jiao C, Sørensen I, Sun XP, Sun HH, Behar H, Alseekh S, Philippe G, Lopez KP, Sun L, Reed R, Jeon S, Kiyonami R, Zhang S, Fernie AR, Brumer H, Domozych DS, Fei ZJ, Rose JKC (2020). The Penium margaritaceum genome: hallmarks of the origins of land plants. Cell 181, 1097-1111. |
[30] |
Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001). The closest living relatives of land plants. Science 294, 2351-2353.
DOI PMID |
[31] |
Kersting AR, Bornberg-Bauer E, Moore AD, Grath S (2012). Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution. Genome Biol Evol 4, 316-329.
DOI PMID |
[32] | Li LZ, Wang SB, Wang HL, Sahu SK, Marin B, Li HY, Xu Y, Liang HP, Li Z, Cheng SF, Reder T, Çebi Z, Wittek S, Petersen M, Melkonian B, Du HL, Yang HM, Wang J, Wong GK, Xu X, Liu X, Van De Peer Y, Melkonian M, Liu H (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nat Ecol Evol 4, 1220-1231. |
[33] | Liang Z, Geng YK, Ji CM, Du H, Wong CE, Zhang Q, Zhang Y, Zhang PX, Riaz A, Chachar S, Ding YK, Wen J, Wu YW, Wang MC, Zheng HK, Wu YM, Demko V, Shen LS, Han X, Zhang PP, Gu XF, Yu H (2019). Mesostigma viride genome and transcriptome provide insights into the origin and evolution of Streptophyta. Adv Sci 7, 1901850. |
[34] |
Ma JC, Wang SH, Zhu XJ, Sun GL, Chang GX, Li LH, Hu XY, Zhang SZ, Zhou Y, Song CP, Huang JL (2022). Major episodes of horizontal gene transfer drove the evolution of land plants. Mol Plant 15, 857-871.
DOI PMID |
[35] |
Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao YD, Hayashi KI, Kamiya Y, Kasahara H (2011). The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108, 18512-18517.
DOI PMID |
[36] | Mueller SP, Krause DM, Mueller MJ, Fekete A (2015). Accumulation of extra-chloroplastic triacylglycerols in Ara- bidopsis seedlings during heat acclimation. J Exp Bot 66, 4517-4526. |
[37] |
Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI, Getzoff ED (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373-1379.
DOI PMID |
[38] |
Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PKI, Janitza P, Kern R, Heyl A, Rümpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang CR, Karol KG, Hedrich R, Ulvskov P, Glöckner G, Delwiche CF, Petrášek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Theißen G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA(2018). The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174, 448-464.
DOI PMID |
[39] | One Thousand Plant Transcriptomes Initiative (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679-685. |
[40] | Pringsheim M (1862). XXXIII.—On the pro-embryos of the Charae. Ann Mag Nat Hist 10, 321-326. |
[41] |
Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ (2018). The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28, 733-745.
DOI PMID |
[42] |
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG (2014). From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol Biol 14, 23.
DOI PMID |
[43] | Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T (2023). A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. New Phytol 237, 1636-1651. |
[44] |
Sémon M, Wolfe KH (2007). Consequences of genome duplication. Curr Opin Genet Dev 17, 505-512.
PMID |
[45] | Serrano-Pérez E, Romero-Losada AB, Morales-Pineda M, García-Gómez ME, Couso I, García-González M, Romero-Campero FJ (2022). Transcriptomic and metabolomic response to high light in the charophyte alga Klebsormidium nitens. Front Plant Sci 13, 855243. |
[46] | Simmons CR, Herman RA (2023). Non-seed plants are emerging gene sources for agriculture and insect control proteins. Plant J 116, 23-37. |
[47] |
Skokan R, Medvecká E, Viaene T, Vosolsobě S, Zwiewka M, Müller K, Skůpa P, Karady M, Zhang YZ, Janacek DP, Hammes UZ, Ljung K, Nodzyński T, Petrášek J, Friml J (2019). PIN-driven auxin transport emerged early in streptophyte evolution. Nat Plants 5, 1114-1119.
DOI PMID |
[48] | Sun XL, Jones WT, Rikkerink EHA (2012). GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signaling. Biochem J 442, 1-12. |
[49] | Wang CY, Gong Z, Han GZ (2023). On the origins and evolution of phytohormone signaling and biosynthesis in plants. Mol Plant 16, 511-513. |
[50] |
Wang CY, Liu Y, Li SS, Han GZ (2014). Origin of plant auxin biosynthesis in charophyte algae. Trends Plant Sci 19, 741-743.
DOI PMID |
[51] |
Wang CY, Liu Y, Li SS, Han GZ (2015). Insights into the origin and evolution of the plant hormone signaling machinery. Plant Physiol 167, 872-886.
DOI PMID |
[52] |
Wang SB, Li LZ, Li HY, Sahu SK, Wang HL, Xu Y, Xian WF, Song B, Liang HP, Cheng SF, Chang Y, Song Y, Çebi Z, Wittek S, Reder T, Peterson M, Yang HM, Wang J, Melkonian B, Van de Peer Y, Xu X, Wong GKS, Melkonian M, Liu H, Liu X (2020). Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6, 95-106.
DOI PMID |
[53] | Wang YH, Yu JX, Tang HB, Zhang XT (2024). Research status and prospect of plant complex genomes and pan- genomes. Sci China Life Sci 54, 233-246. (in Chinese) |
王英豪, 余嘉鑫, 唐海宝, 张兴坦 (2024). 植物复杂基因组与泛基因组研究现状与展望. 中国科学: 生命科学 54, 233-246. | |
[54] | Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian ZJ, Yan ZX, Wu XL, Sun X, Wong GKS, Leebens-Mack J (2014). Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111, E4859-E4868. |
[55] |
Wu Z, Cheng SF (2021). Overview on the origin of land plants. Chin J Nat 43, 225-231. (in Chinese)
DOI |
吴珍, 程时锋 (2021). 陆地植物起源研究的新进展. 自然杂志 43, 225-231. | |
[56] |
Xie LJ, Gong XJ, Yang K, Huang YJ, Zhang SY, Shen LT, Sun YQ, Wu DY, Ye CY, Zhu QH, Fan LJ (2024). Technology-enabled great leap in deciphering plant genomes. Nat Plants 10, 551-566.
DOI PMID |
[57] | Xue JZ, Shen B, Huang P (2022). How did plants colonize land and reshape Earth’s surface systems? Earth Sci 47, 3849-3850. (in Chinese) |
薛进庄, 沈冰, 黄璞 (2022). 植物如何登上陆地并改造地球表层系统? 地球科学 47, 3849-3850. | |
[58] |
Zhou H, von Schwartzenberg K (2020). Zygnematophyceae: from living algae collections to the establishment of future models. J Exp Bot 71, 3296-3304.
DOI PMID |
[1] | Dong Cao, Huanlong Li, Yang Peng, Cunzheng Wei. Progresses in the study of the relationship between plant genome size and traits [J]. Biodiv Sci, 2025, 33(2): 24192-. |
[2] | Zhen Lin, Jiabao Xiang, Hejiayi Cai, Bei Gao, Jintao Yang, Junyi Li, Qingsong Zhou, Xiaolei Huang, Jun Deng. Mitochondrial genomic data for seven Hemipteran species [J]. Biodiv Sci, 2025, 33(2): 24434-. |
[3] | Hong Deng, Zhanyou Zhong, Chunni Kou, Shuli Zhu, Yuefei Li, Yuguo Xia, Zhi Wu, Jie Li, Weitao Chen. Population genetic structure and evolutionary history of Hemibagrus guttatus based on mitochondrial genomes [J]. Biodiv Sci, 2025, 33(1): 24241-. |
[4] | Xiangtan Yao, Xinyi Zhang, Yang Chen, Ye Yuan, Wangda Cheng, Tianrui Wang, Yingxiong Qiu. Genomic resequencing reveals the genetic diversity of the cultivated water caltrop, and the origin and domestication of ‘Nanhuling’ [J]. Biodiv Sci, 2024, 32(9): 24212-. |
[5] | Qiang Zhang, Zhenyu Zhao, Pinghua Li. Research Progress of Gene Editing Technology in Maize [J]. Chinese Bulletin of Botany, 2024, 59(6): 978-998. |
[6] | Yuan Li, Kaijian Fan, Tai An, Cong Li, Junxia Jiang, Hao Niu, Weiwei Zeng, Yanfang Heng, Hu Li, Junjie Fu, Huihui Li, Liang Li. Study on Multi-environment Genome-wide Prediction of Inbred Agronomic Traits in Maize Natural Populations [J]. Chinese Bulletin of Botany, 2024, 59(6): 1041-1053. |
[7] | Danling Hu, Yongwei Sun. Advances in Virus-mediated Genome Editing Technology in Plants [J]. Chinese Bulletin of Botany, 2024, 59(3): 452-462. |
[8] | Zhengyong Duan, Min Ding, Yuzhuo Wang, Yibing Ding, Ling Chen, Ruiyun Wang, Zhijun Qiao. Genome-wide Identification and Expression Analysis of SBP Genes in Panicum miliaceum [J]. Chinese Bulletin of Botany, 2024, 59(2): 231-244. |
[9] | Zhi Yang, Yong Yang. Research Advances on Nuclear Genomes of Economically Important Trees of Lauraceae [J]. Chinese Bulletin of Botany, 2024, 59(2): 302-318. |
[10] | Xiting Yu, Xuehui Huang. New Insights Into the Origin of Modern Maize-hybridization of Two Teosintes [J]. Chinese Bulletin of Botany, 2023, 58(6): 857-860. |
[11] | Zhaoyang Jing, Keguang Cheng, Heng Shu, Yongpeng Ma, Pingli Liu. Whole genome resequencing approach for conservation biology of endangered plants [J]. Biodiv Sci, 2023, 31(5): 22679-. |
[12] | Bangbang Wu, Yuqiong Hao, Shubin Yang, Yuxi Huang, Panfeng Guan, Xingwei Zheng, Jiajia Zhao, Ling Qiao, Xiaohua Li, Weizhong Liu, Jun Zheng. Evaluation and Genetic Variation of Grain Lutein Contents in Common Wheat From Shanxi [J]. Chinese Bulletin of Botany, 2023, 58(4): 535-547. |
[13] | Rong Sun, Yulu Yang, Yajun Li, Hui Zhang, Xukai Li. Genome-wide Identification and Analysis of PLATZ Transcription Factor Gene Family in Foxtail Millet [J]. Chinese Bulletin of Botany, 2023, 58(4): 548-559. |
[14] | Fei Xiong, Hongyan Liu, Dongdong Zhai, Xinbin Duan, Huiwu Tian, Daqing Chen. Population genetic structure of Pelteobagrus vachelli in the upper Yangtze River based on genome re-sequencing [J]. Biodiv Sci, 2023, 31(4): 22391-. |
[15] | Zhenzhou Chu, Gulbar Yisilam, Zezhong Qu, Xinmin Tian. Comparative Analyses on the Chloroplast Genome of Three Sympatric Atraphaxis Species [J]. Chinese Bulletin of Botany, 2023, 58(3): 417-432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||