Chinese Bulletin of Botany ›› 2023, Vol. 58 ›› Issue (4): 535-547.DOI: 10.11983/CBB22081
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Bangbang Wu1, Yuqiong Hao2, Shubin Yang1, Yuxi Huang1, Panfeng Guan3, Xingwei Zheng2, Jiajia Zhao2, Ling Qiao2, Xiaohua Li2, Weizhong Liu1(), Jun Zheng2()
Received:
2022-04-20
Accepted:
2022-09-19
Online:
2023-07-01
Published:
2022-11-11
Contact:
*E-mail: liuwzh@sxnu.edu.cn;sxnkyzj@126.com
About author:
† These authors contributed equally to this paper.
Bangbang Wu, Yuqiong Hao, Shubin Yang, Yuxi Huang, Panfeng Guan, Xingwei Zheng, Jiajia Zhao, Ling Qiao, Xiaohua Li, Weizhong Liu, Jun Zheng. Evaluation and Genetic Variation of Grain Lutein Contents in Common Wheat From Shanxi[J]. Chinese Bulletin of Botany, 2023, 58(4): 535-547.
Figure 1 HPLC chromatogram of lutein from standards of different concentrations and flour of samples (A) HPLC peak plots of lutein from standards of different concentrations; (B) HPLC peak plots of lutein from tested wheat samples; (C) Flour of samples
Accessions | Sample contents (μg·g-1) | Added (μg) | Detection (μg·g-1) | Recove- ries (%) |
---|---|---|---|---|
Jinmai47 | 1.22 | 3 | 4.06 | 96.33 |
Jinmai98 | 2.36 | 5 | 7.27 | 98.76 |
Jinmai84 | 1.85 | 4 | 5.72 | 97.81 |
Jinmai919 | 2.38 | 5 | 7.25 | 98.24 |
Table 1 The spiked recoveries of lutein content with wheat genotypes
Accessions | Sample contents (μg·g-1) | Added (μg) | Detection (μg·g-1) | Recove- ries (%) |
---|---|---|---|---|
Jinmai47 | 1.22 | 3 | 4.06 | 96.33 |
Jinmai98 | 2.36 | 5 | 7.27 | 98.76 |
Jinmai84 | 1.85 | 4 | 5.72 | 97.81 |
Jinmai919 | 2.38 | 5 | 7.25 | 98.24 |
Accessions | Samples contents (μg·g-1) | Average (μg·g-1) | RSD (%) | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Jinmai47 | 1.34 | 1.37 | 1.32 | 1.25 | 1.28 | 1.31 | 3.25 |
Jinmai98 | 2.76 | 2.64 | 2.93 | 2.99 | 2.85 | 2.83 | 4.38 |
Jinmai84 | 1.89 | 1.97 | 1.95 | 1.74 | 1.85 | 1.88 | 4.36 |
Jinmai919 | 2.53 | 2.66 | 2.37 | 2.49 | 2.59 | 2.53 | 3.86 |
Table 2 Relative standard deviation of lutein content with wheat genotypes (n=5)
Accessions | Samples contents (μg·g-1) | Average (μg·g-1) | RSD (%) | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
Jinmai47 | 1.34 | 1.37 | 1.32 | 1.25 | 1.28 | 1.31 | 3.25 |
Jinmai98 | 2.76 | 2.64 | 2.93 | 2.99 | 2.85 | 2.83 | 4.38 |
Jinmai84 | 1.89 | 1.97 | 1.95 | 1.74 | 1.85 | 1.88 | 4.36 |
Jinmai919 | 2.53 | 2.66 | 2.37 | 2.49 | 2.59 | 2.53 | 3.86 |
Figure 2 The lutein contents and the effect of geographic distribution of wheat accessions from different environments (A) Lutein contents of wheat genotypes under different environments; (B) Effect of geographic distribution on lutein content. E1, E2 and E3 are the same as shown in Table 3.
Environment | Number of wheat genotypes grouped by lutein contents | ||||
---|---|---|---|---|---|
<1.0 (μg·g-1) | 1.0-1.5 (μg·g-1) | 1.5-2.0 (μg·g-1) | 2.0-2.5 (μg·g-1) | >2.5 (μg·g-1) | |
E1 | 19 | 58 | 68 | 29 | 11 |
E2 | 41 | 49 | 46 | 19 | 24 |
E3 | 41 | 74 | 42 | 19 | 3 |
Table 3 Wheat genotypes grouped by lutein content under different environments
Environment | Number of wheat genotypes grouped by lutein contents | ||||
---|---|---|---|---|---|
<1.0 (μg·g-1) | 1.0-1.5 (μg·g-1) | 1.5-2.0 (μg·g-1) | 2.0-2.5 (μg·g-1) | >2.5 (μg·g-1) | |
E1 | 19 | 58 | 68 | 29 | 11 |
E2 | 41 | 49 | 46 | 19 | 24 |
E3 | 41 | 74 | 42 | 19 | 3 |
Figure 3 Lutein contents effected by grain color (A), winter/spring types (B), irrigated/dryland types (C) and released years (D) E1, E2 and E3 are the same as shown in Table 3. *P<0.05; **P<0.01
Environment | pH | SL | NS | SIU | HD | FLL | FLW | SN | GNS | GL | GW | GT | TKW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | -0.21* | -0.12 | -0.12 | -0.14 | -0.07* | -0.43 | -0.03 | 0.01 | 0.06 | 0.14 | 0.10 | 0.06 | -0.18* |
E2 | -0.20* | -0.04 | -0.16* | -0.16* | -0.10* | 0.02 | 0.08 | 0.01 | 0.01 | 0.07 | -0.16* | 0.12 | 0.12 |
E3 | -0.19* | -0.05 | -0.13 | -0.13 | -0.04* | -0.01 | 0.01 | -0.02 | 0.01 | 0.09 | 0.04 | 0.05 | 0.05 |
BLUP | -0.22* | -0.07 | -0.14 | -0.16* | -0.04* | -0.03 | 0.08 | 0.04 | 0.04 | 0.10 | -0.13* | 0.07 | -0.23* |
Table 4 Correlation of lutein contents and important agronomic traits
Environment | pH | SL | NS | SIU | HD | FLL | FLW | SN | GNS | GL | GW | GT | TKW |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | -0.21* | -0.12 | -0.12 | -0.14 | -0.07* | -0.43 | -0.03 | 0.01 | 0.06 | 0.14 | 0.10 | 0.06 | -0.18* |
E2 | -0.20* | -0.04 | -0.16* | -0.16* | -0.10* | 0.02 | 0.08 | 0.01 | 0.01 | 0.07 | -0.16* | 0.12 | 0.12 |
E3 | -0.19* | -0.05 | -0.13 | -0.13 | -0.04* | -0.01 | 0.01 | -0.02 | 0.01 | 0.09 | 0.04 | 0.05 | 0.05 |
BLUP | -0.22* | -0.07 | -0.14 | -0.16* | -0.04* | -0.03 | 0.08 | 0.04 | 0.04 | 0.10 | -0.13* | 0.07 | -0.23* |
Figure 4 The genome-wide association study (GWAS) result of the lutein content from different environments E1, E2 and E3 are the same as shown in Table 3; BLUP is the same as shown in Table 4. The black dashed line represent the threshold for the significance of marker-trait association.
Loci | Chr. | Interval (MB) | Environment | Peak SNP | P-value | R2 (%) |
---|---|---|---|---|---|---|
QLuc.1B | 1B | 135.25-158.25 | BLUP | 1B_146746777 | 6.70E-05 | 5.78 |
QLuc.3A | 3A | 648.92-660.63 | BLUP | 3A_653919298 | 5.68E-05 | 8.47 |
E2 | 3A_655632858 | 5.59E-05 | 7.74 | |||
QLuc.7A.1 | 7A | 75.63-95.65 | E1, E2, BLUP | 7A_85627950 | 6.30E-05 | 6.32 |
E1, E3, BLUP | 7A_85658392 | 4.84E-05 | 10.95 | |||
QLuc.7A.2 | 7A | 729.71-765.19 | E2 | 7A_739708412 | 4.08E-05 | 12.28 |
E1 | 7A_741083088 | 4.23E-05 | 10.03 | |||
BLUP | 7A_741778749 | 4.92E-05 | 10.43 | |||
BLUP | 7A_755187469 | 4.26E-05 | 11.21 |
Table 5 Summary of associated loci with traits by genome-wide association study (GWAS)
Loci | Chr. | Interval (MB) | Environment | Peak SNP | P-value | R2 (%) |
---|---|---|---|---|---|---|
QLuc.1B | 1B | 135.25-158.25 | BLUP | 1B_146746777 | 6.70E-05 | 5.78 |
QLuc.3A | 3A | 648.92-660.63 | BLUP | 3A_653919298 | 5.68E-05 | 8.47 |
E2 | 3A_655632858 | 5.59E-05 | 7.74 | |||
QLuc.7A.1 | 7A | 75.63-95.65 | E1, E2, BLUP | 7A_85627950 | 6.30E-05 | 6.32 |
E1, E3, BLUP | 7A_85658392 | 4.84E-05 | 10.95 | |||
QLuc.7A.2 | 7A | 729.71-765.19 | E2 | 7A_739708412 | 4.08E-05 | 12.28 |
E1 | 7A_741083088 | 4.23E-05 | 10.03 | |||
BLUP | 7A_741778749 | 4.92E-05 | 10.43 | |||
BLUP | 7A_755187469 | 4.26E-05 | 11.21 |
[1] |
何卿, 孙国峰, 林秦文, 李晓东, 张金政 (2018). 植物类胡萝卜素提取与分析技术研究进展. 植物学报 53, 700-709.
DOI |
[2] | 胡瑞波, 田纪春, 吕建华 (2004). 小麦类胡萝卜素含量的稳定性及其与黄碱面条色泽性状的相关性分析. 作物学报 30, 597-601. |
[3] |
刘敏轩, 陆平 (2013). 中国谷子育成品种维生素E含量分布规律及其与主要农艺性状和类胡萝卜素的相关性分析. 作物学报 39, 398-408.
DOI |
[4] |
乔玲, 刘成, 郑兴卫, 赵佳佳, 尚保华, 马小飞, 乔麟轶, 盖红梅, 姬虎太, 刘建军, 张建诚, 郑军 (2018). 小麦骨干亲本临汾5064单元型区段的遗传解析. 作物学报 44, 931-937.
DOI |
[5] | 任得强, 吴媛媛, 周健, 姜艳, 郑文寅, 张文明, 姚大年 (2014). 小麦品种(系)籽粒类胡萝卜素含量及其与其他品质性状的相关性. 麦类作物学报 34, 868-873. |
[6] | 孙善澄, 孙玉, 袁文业, 阎文泽, 裴自友, 张美荣, 白云凤 (1999). 优质黑粒小麦76的选育及品质分析. 作物学报 25, 50-54. |
[7] | 汪帆, 郑文寅, 黄建华, 王冠球, 崔文礼, 张文明, 姚大年 (2012). 20个小麦品种(系)籽粒LOX活性和类胡萝卜素含量及全麦粉色泽的研究. 麦类作物学报 32, 68-73. |
[8] | 王光瑞, 周桂英, 王瑞 (1997). 焙烤品质与面团形成和稳定时间相关分析. 中国粮油学报 12(3), 1-6. |
[9] | 王亮, 穆培源, 徐红军, 庄丽, 桑伟, 聂迎彬, 韩新年, 邹波 (2009). 新疆小麦品种黄色素含量基因(Psy-A1) 等位变异的分子检测. 麦类作物学报 29, 782-786. |
[10] | 王秋叶, 张建诚, 姚景珍 (1999). 河东乌麦526品种资源营养学评价. 山西农业科学 27(3), 18-21. |
[11] | 徐兆飞 (2006). 山西小麦. 北京: 中国农业出版社. pp. 25-27. |
[12] |
赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军 (2021). 山西省小麦苗期根系性状及抗旱特性分析. 作物学报 47, 714-727.
DOI |
[13] | 朱金宝, 刘广田, 张树榛 (1995). 基因型和环境对小麦烘烤品质的影响. 作物学报 21, 679-684. |
[14] |
Abdel-Aal ESM, Young JC, Rabalski I, Hucl P, Fregeau- Reid J (2007). Identification and quantification of seed carotenoids in selected wheat species. J Agric Food Chem 55, 787-794.
DOI URL |
[15] |
Abdel-Aal ESM, Young JC, Wood PJ, Rabalski I, Hucl P, Falk D, Fregeau-Reid J (2002). Einkorn: a potential candidate for developing high lutein wheat. Cereal Chem 79, 455-457.
DOI URL |
[16] |
Ashokkumar K, Govindaraj M, Karthikeyan A, Shobhana VG, Warkentin TD (2020). Genomics-integrated breeding for carotenoids and folates in staple cereal grains to reduce malnutrition. Front Genet 11, 414.
DOI PMID |
[17] |
Blanco A, Colasuonno P, Gadaleta A, Mangini G, Schiavulli A, Simeone R, Digesù AM, De Vita P, Mastrangelo AM, Cattivelli L (2011). Quantitative trait loci for yellow pigment concentration and individual carotenoid compounds in durum wheat. J Cereal Sci 54, 255-264.
DOI URL |
[18] |
Calvo MM (2005). Lutein: a valuable ingredient of fruit and vegetables. Crit Rev Food Sci Nutr 45, 671-696.
PMID |
[19] |
Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A (2014). Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol Breed 34, 1563-1578.
DOI URL |
[20] |
Colasuonno P, Lozito ML, Marcotuli I, Nigro D, Giancaspro A, Mangini G, De Vita P, Mastrangelo AM, Pecchioni N, Houston K, Simeone R, Gadaleta A, Blanco A (2017). The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments. BMC Genomics 18, 122.
DOI PMID |
[21] |
Colasuonno P, Marcotuli I, Blanco A, Maccaferri M, Condorelli GE, Tuberosa R, Parada R, De Camargo AC, Schwember AR, Gadaleta A (2019). Carotenoid pigment content in durum wheat (Triticum turgidum L. var. durum): an overview of quantitative trait loci and candidate genes. Front Plant Sci 10, 1347.
DOI URL |
[22] |
Crawford AC, Francki MG (2013). Lycopene-ε-cyclase (e-LCY3A) is functionally associated with quantitative trait loci for flour b* colour on chromosome 3A in wheat (Triticum aestivum L.). Mol Breed 31, 737-741.
DOI URL |
[23] |
Demmig-Adams B, Adams III WW (2002). Antioxidants in photosynthesis and human nutrition. Science 298, 2149-2153.
PMID |
[24] |
Dibari B, Murat F, Chosson A, Gautier V, Poncet C, Lecomte P, Mercier I, Bergès H, Pont C, Blanco A, Salse J (2012). Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses. BMC Genomics 13, 221.
DOI PMID |
[25] |
Digesù AM, Platani C, Cattivelli L, Mangini G, Blanco A (2009). Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats. J Cereal Sci 50, 210-218.
DOI URL |
[26] |
Elouafi I, Nachit MM, Martin LM (2001). Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135, 255-261.
PMID |
[27] | FAO, IFAD, UNICEF, WFP, WHO (2017). The state of food security and nutrition in the world 2017: building resilience for peace and food security. Roma: Food and Agriculture Organization of the United Nations. pp. 14-15. |
[28] |
Farré G, Sanahuja G, Naqvi S, Bai C, Capell T, Zhu CF, Christou P (2010). Travel advice on the road to carotenoids in plants. Plant Sci 179, 28-48.
DOI URL |
[29] |
Gann PH, Khachik F (2003). Tomatoes or lycopene versus prostate cancer: is evolution anti-reductionist? J Natl Cancer Inst 95, 1563-1565.
DOI PMID |
[30] |
Giambanelli E, Ferioli F, Koçaoglu B, Jorjadze M, Alexieva I, Darbinyan N, D'antuono LF (2013). A comparative study of bioactive compounds in primitive wheat populations from Italy, Turkey, Georgia, Bulgaria and Armenia. J Sci Food Agric 93, 3490-3501.
DOI URL |
[31] |
Groth S, Wittmann R, Longin CFH, Böhm V (2020). Influence of variety and growing location on carotenoid and vitamin E contents of 184 different durum wheat varieties (Triticum turgidum ssp. durum) in Germany. Eur Food Res Technol 246, 2079-2092.
DOI |
[32] |
Hadley CW, Clinton SK, Schwartz SJ (2003). The consumption of processed tomato products enhances plasma lycopene concentrations in association with a reduced lipoprotein sensitivity to oxidative damage. J Nutr 133, 727-732.
DOI PMID |
[33] |
Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan JB, Buckler ES (2008). Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319, 330-333.
DOI URL |
[34] |
Hidalgo A, Brandolini A (2014). Nutritional properties of einkorn wheat (Triticum monococcum L.). J Sci Food Agric 94, 601-612.
DOI URL |
[35] |
Howitt CA, Cavanagh CR, Bowerman AF, Cazzonelli C, Rampling L, Mimica JL, Pogson BJ (2009). Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm. Funct Integr Genomics 9, 363-376.
DOI URL |
[36] | Institute of Medicine US Panel on Dietary Antioxidants and Related Compounds (2000). Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US). pp. 143-151. |
[37] |
Konopka I, Czaplicki S, Rotkiewicz D (2006). Differences in content and composition of free lipids and carotenoids in flour of spring and winter wheat cultivated in Poland. Food Chem 95, 290-300.
DOI URL |
[38] |
Li FQ, Vallabhaneni R, Wurtzel ET (2008). PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiol 146, 1333-1345.
DOI PMID |
[39] |
Li LH, Lee JCY, Leung HH, Lam WC, Fu ZJ, Lo ACY (2020). Lutein supplementation for eye diseases. Nutrients 12, 1721.
DOI URL |
[40] |
Li WS, Zhai SN, Jin H, Wen WE, Liu JD, Xia XC, He ZH (2016). Genetic variation of carotenoids in Chinese bread wheat cultivars and the effect of the 1BL.1RS translocation. Front Agric Sci Eng 3, 124-130.
DOI |
[41] |
Lv JL, Lu YJ, Niu YG, Whent M, Ramadan MF, Costa J, Yu LL (2013). Effect of genotype, environment, and their interaction on phytochemical compositions and antioxidant properties of soft winter wheat flour. Food Chem 138, 454-462.
DOI PMID |
[42] |
Mares DJ, Campbell AW (2001). Mapping components of flour and noodle colour in Australian wheat. Aust J Agric Res 52, 1297-1309.
DOI URL |
[43] |
Moore J, Hao ZG, Zhou KQ, Luther M, Costa J, Yu LL (2005). Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat. J Agric Food Chem 53, 6649-6657.
DOI URL |
[44] |
Patil RM, Oak MD, Tamhankar SA, Sourdille P, Rao VS (2008). Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol Breed 21, 485-496.
DOI URL |
[45] |
Paznocht L, Kotíková Z, Šulc M, Lachman J, Orsák M, Eliášová M, Martinek P (2018). Free and esterified carotenoids in pigmented wheat, tritordeum and barley grains. Food Chem 240, 670-678.
DOI PMID |
[46] |
Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007). Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114, 525-537.
DOI PMID |
[47] |
Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Somers DJ, Knox RE, Singh AK (2008). Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 51, 1016-1025.
DOI PMID |
[48] |
Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000). An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97, 11102-11107.
DOI PMID |
[49] |
Shewry PR, Sandra H (2015). Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J Cereal Sci 65, 236-243.
DOI URL |
[50] |
Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009). Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118, 1539-1548.
DOI PMID |
[51] |
Tracewell CA, Vrettos JS, Bautista JA, Frank HA, Brudvig GW (2001). Carotenoid photooxidation in photosystem II. Arch Biochem Biophys 385, 61-69.
PMID |
[52] |
Wang LF, Ge HM, Hao CY, Dong YS, Zhang XY (2012). Identifying loci influencing 1 000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One 7, e29432.
DOI URL |
[53] |
Welsch R, Wüst F, Bär C, Al-Babili S, Beyer P (2008). A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol 147, 367-380.
DOI PMID |
[54] |
Zhai SN, He ZH, Wen WE, Jin H, Liu JD, Zhang Y, Liu ZY, Xia XC (2016). Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theor Appl Genet 129, 377-394.
DOI PMID |
[55] |
Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008). QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117, 1361-1377.
DOI PMID |
[56] |
Zhang YL, Wu YP, Xiao YG, He ZH, Zhang Y, Yan J, Zhang Y, Xia XC, Ma CX (2009). QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica 165, 435-444.
DOI URL |
[57] | Zhao Y, Sun HY, Wang YY, Pu YY, Kong FM, Li SS (2013). QTL mapping for the color, carotenoids and polyphenol oxidase activity of flour in recombinant inbred lines of wheat. Aust J Crop Sci 7, 328-337. |
[58] |
Zheng XW, Qiao L, Liu Y, Wei NC, Zhao JJ, Wu BB, Yang B, Wang JL, Zheng J (2022). Genome-wide association study of grain number in common wheat from Shanxi under different water regimes. Front Plant Sci 12, 806295.
DOI URL |
[1] | Xiao Liu, Wanying Du, Yunxiu Zhang, Chengming Tang, Huawei Li, Haiyong Xia, Shoujin Fan, Ling’an Kong. Nitrate-dependent Alleviation of Root Ammonium Toxicity in Wheat (Triticum aestivum) [J]. Chinese Bulletin of Botany, 2024, 59(3): 397-413. |
[2] | Ming-Yi Bai, Jinrong Peng, Xiangdong Fu. Coordinated Regulation of Gibberellin and Brassinosteroid Signalings Drives Toward a Sustainable “Green Revolution” by Breeding the New Generation of High-yield Wheat [J]. Chinese Bulletin of Botany, 2023, 58(2): 194-198. |
[3] | Yuan Li, Yujie Chang, Lanfen Wang, Shumin Wang, Jing Wu. Screening of Resistance Germplasm Resources and Genome-wide Association Study of Fusarium Wilt in Common Bean [J]. Chinese Bulletin of Botany, 2023, 58(1): 51-61. |
[4] | Hongwei Li, Qi Zheng, Bin Li, Zhensheng Li. Research Progress on the Aspects of Molecular Breeding of Tall Wheatgrass [J]. Chinese Bulletin of Botany, 2022, 57(6): 792-801. |
[5] | Kong Lingrang. Breaking the Gene Code Conferring Broad-spectrum Resistance to Rust Fugi [J]. Chinese Bulletin of Botany, 2022, 57(4): 405-408. |
[6] | Jiahuan Sun, Dong Liu, Jiaqi Zhu, Shuning Zhang, Meixiang Gao. Spatial distribution pattern of soil mite community and body size in wheat- maize rotation farmland [J]. Biodiv Sci, 2022, 30(12): 22292-. |
[7] | Zhenbin Jiao, Yibo Luo. Effects of environmental and genetic factors on phenotypic traits and species classification of Dendrobium huoshanense [J]. Biodiv Sci, 2021, 29(8): 1073-1086. |
[8] | Wei Xuan, Guohua Xu. Genomic Basis of Rice Adaptation to Soil Nitrogen Status [J]. Chinese Bulletin of Botany, 2021, 56(1): 1-5. |
[9] | Yuhui Zhao, Xiuxiu Li, Zhuo Chen, Hongwei Lu, Yucheng Liu, Zhifang Zhang, Chengzhi Liang. An Overview of Genome-wide Association Studies in Plants [J]. Chinese Bulletin of Botany, 2020, 55(6): 715-732. |
[10] | Guangtao Zhu,Sanwen Huang. A 360-degree Scanning of Population Genetic Variations—a Pan-genome Study of Soybean [J]. Chinese Bulletin of Botany, 2020, 55(4): 403-406. |
[11] | Jian-Min Zhou. Fighting Fusarium Head Blight in Wheat—a Remedy from Afar [J]. Chinese Bulletin of Botany, 2020, 55(2): 123-125. |
[12] | Qingxia Miao,Yan Fang,Yinglong Chen. Studies in the Responses of Wheat Root Traits to Drought Stress [J]. Chinese Bulletin of Botany, 2019, 54(5): 652-661. |
[13] | Rui GUO, Ji ZHOU, Fan YANG, Feng LI. Metabolic responses of wheat roots to alkaline stress [J]. Chin J Plant Ecol, 2017, 41(6): 683-692. |
[14] | Jing-Xin XU, You-Fei ZHENG, Bo-Ru MAI, Hui ZHAO, Zhong-Fang CHU, Ji-Qing HUANG, Yue YUAN. Characteristics and partitioning of ozone dry deposition measured by eddy-covariance technology in a winter wheat field [J]. Chin J Plant Ecol, 2017, 41(6): 670-682. |
[15] | Zhengjun Xia. Research Progress in Whole-genome Analysis and Cloning of Genes Underlying Important Agronomic Traits in Soybean [J]. Chinese Bulletin of Botany, 2017, 52(2): 148-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||