Chin Bull Bot ›› 2018, Vol. 53 ›› Issue (6): 848-855.doi: 10.11983/CBB17236

• SPECIAL TOPICS • Previous Articles     Next Articles

Research Advances in the Cytological and Molecular Mechanisms of Leaf Rolling in Rice

Zhou Tingting1,2, Rao Yuchun1,*(), Ren Deyong2,*()   

  1. 1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
    2State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
  • Received:2017-12-05 Online:2018-12-05 Published:2018-11-01
  • Contact: Rao Yuchun,Ren Deyong E-mail:ryc1984@163.com;rendeyong616@163.com

Abstract:

Leaf rolling is one of the important traits for breeding rice (Oryza sativa). Moderate leaf rolling plays a key role in plant photosynthesis, architecture and high yield. This paper reviews the research advances in rice leaf rolling, especially the cytological and molecular mechanisms of genes related to leaf rolling. These findings can facilitate a further understanding of the mechanisms and promote the use of the leaf rolling trait in rice breeding.

Key words: rice, leaf rolling, cytological mechanism, molecular mechanism

Table 1

Relative genes of leaf rolling in rice"

基因名称 所在染色体号 显/隐性 表型特征 功能 参考文献
rl1 1 隐性 窄叶, 内卷 未知 张俊杰, 2015
rl4 1 隐性 内卷 未知 Khush et al., 1991
Url1a(t) 1 隐性 内卷 未知 余东等, 2008
REL1 1 显性 外卷 未知功能蛋白 Chen et al., 2015
ADL1 2 隐性 外卷 半胱氨酸蛋白酶 Hibara et al., 2009
CFL1 2 显性 内卷 编码WW结构域 Wu et al., 2011
ROC5 2 隐性 外卷 亮氨酸拉链蛋白 Zou et al., 2011
Nir 2 隐性 内卷 未知 陈蕾等, 2015
Nrl3(t) 2 隐性 内卷 未知 张小惠等, 2015
IRL1 2 隐性 外卷 富亮氨酸重复类受体蛋白激酶 Park et al., 2014
rl(t) 2 不完全显性 内卷 未知 邵元健等, 2005
s1-145 2 隐性 内卷 未知 Xie et al., 2013
NAL7 3 隐性 内卷 未知 Fujino et al., 2008
OsAGO7 3 显性 内卷 含有PAZ和PIWI结构域的蛋白 Shi et al., 2007
SRL2 3 隐性 窄卷叶 新的植物特异蛋白 Liu et al., 2016
nrl4 3 隐性 内卷 未知 Liang et al., 2016
70-36 3 隐性 内卷 未知 王凡华, 2016
OsLBD3-7 3 隐性 窄叶, 内卷 LBD家族转录因子 Li et al., 2016
Cvd1 3 隐性 内卷 未知 Jing et al., 2017
NRL2(t) 3 隐性 内卷 未知 Wang et al., 2011
OsFMO(t) 3 隐性 内卷 未知 Yi et al., 2013
ACL1 4 隐性 外卷 编码没有保守功能的结构域蛋白 Li et al., 2010
Rl11(t) 4 隐性 内卷 未知 Zhou et al., 2010
rl8 5 隐性 内卷 未知 邵元健等, 2005
RL28 5 隐性 内卷 未知 冯萍等, 2015
Ocu5 6 显性 正卷 未知 王文乐, 2016
RL13 6 隐性 内卷 未知 田晓庆等, 2012
sd-sl 6 隐性 微卷 未知 夏令等, 2007
SRL1 7 隐性 内卷 未知 Xiang et al., 2012
SLL2 7 隐性 内卷 未知 Zhang et al., 2015
Cld1 7 隐性 内卷 未知 Li et al., 2017
rl11(t) 7 隐性 内卷 未知 施勇烽等, 2008
DG1 8 隐性 内卷 未知 Yu et al., 2017
OsMYB103L 8 隐性 内卷 R2R3型MYB转录因子 Yang et al., 2014
RL9(t) 9 隐性 内卷 未知 Yan et al., 2006
SLL1 9 隐性 极度内卷 SHAQKYF类MYB转录因子 Zhang et al., 2009
RL10(t) 9 隐性 微卷 未知 Luo et al., 2007
LRL1 9 隐性 内卷 未知 赵芳明等, 2015
Zw209 9 隐性 内卷 未知 李战朋等, 2016
OsZHD1 9 隐性 外卷 锌指结构域蛋白 Xu et al., 2014
RL14 10 隐性 内卷 2OG-Fe(II)加氧酶 Fang et al., 2012
RL12(t) 10 显性 内卷 未知 Luo et al., 2009
RL15(t) 10 隐性 内卷 未知 张礼霞等, 2014
dnl2 10 隐性 内卷 未知 Adedze et al., 2017
NRL(t) 11 隐性 内卷 未知 陈涛等, 2014
NRL1 12 隐性 窄卷叶 纤维素合成酶D4 Hu et al., 2010
NAL3(t) 12 隐性 内卷 未知 汪得凯等, 2009
[1] 陈蕾, 李小华, 叶胜海, 张小明, 翟荣荣, 金庆生 (2015). 一个水稻类感干尖线虫卷叶突变体的遗传分析与基因定位. 核农学报 29, 617-622.
doi: 10.11869/j.issn.100-8551.2015.04.0617
[2] 陈涛, 刘燕清, 张亚东, 朱镇, 赵庆勇, 周丽慧, 姚姝, 于新, 赵凌, 王才林 (2014). 水稻窄卷叶突变体nrl(t)的遗传分析与基因定位. 华北农学报 29(4), 37-43.
doi: 10.7668/hbnxb.2014.04.007
[3] 冯萍, 邢亚迪, 刘松, 郭爽, 朱美丹, 娄启金, 桑贤春, 何光华, 王楠 (2015). 水稻卷叶突变体rl28的特性与基因定位. 作物学报 41, 1164-1171.
doi: 10.3724/SP.J.1006.2015.01164
[4] 郭旻, 李荣德, 姚健, 朱娟, 范祥云, 王伟, 汤述翥, 顾铭洪, 严长杰 (2014). 水稻叶片形态相关基因RL3(t)的遗传分析和精细定位. 中国水稻科学 28, 458-464.
doi: 10.3969/j.issn.10017216.2014.05. 002
[5] 李战朋, 吴金霞, 张治国 (2016). 一个水稻卷叶突变体zw209的遗传分析与精细定位. 中国农业科技导报 18(5), 25-32.
[6] 林鸿宣, 钱惠荣, 熊振民, 闵绍楷, 郑康乐 (1996). 几个水稻品种抽穗期主效基因与微效基因的定位研究. 遗传学报 23, 205-213.
doi: 10.1007/BF02951625
[7] 罗远章 (2010). 水稻新型卷叶突变体rl12(t)的遗传分析和基因定位. 西南大学 35, 1967-1972.
doi: 10.7666/d.y1670927
[8] 邵元健, 潘存红, 陈宗祥, 左示敏, 张亚芳, 潘学彪 (2005). 水稻不完全隐性卷叶主基因rl(t)的精细定位. 科学通报 50, 2107-2113.
[9] 沈年伟, 钱前, 张光恒 (2009). 水稻卷叶性状的研究进展及在育种中的应用. 分子植物育种 7, 852-860.
doi: 10.3969/mpb.007.000852
[10] 施勇烽, 陈洁, 刘文强, 黄奇娜, 沈波, Hei leung, 吴建利 (2008). 水稻卷叶基因rI-11(t)的精细定位. 见: 中国遗传学会. 中国遗传学会第八次代表大会暨学术讨论会论文摘要汇编(2004-2008). 407-412.
[11] 田晓庆, 桑贤春, 赵芳明, 李云峰, 凌英华, 杨正林, 何光华 (2012). 水稻卷叶基因RL13的遗传分析和分子定位. 作物学报 38, 423-428.
doi: 10.3724/SP.J.1006.2012.00423
[12] 汪得凯, 刘合芹, 李克磊, 李素娟, 陶跃之 (2009). 一个水稻窄叶突变体的鉴定和基因定位. 科学通报 54, 360-365.
[13] 王凡华 (2016). 一个水稻显性卷叶突变体的遗传分析与基因定位. 硕士论文. 广州: 华南农业大学. pp. 7.
[14] 王莉 (2014). 水稻叶形及叶脉发育调控基因OsARVL4定位及功能分析. 硕士论文. 北京: 中国农业科学院. pp. 20.
[15] 王美娥 (2012). 叶片披垂和卷曲性状对水稻光抑制及衰老进程的影响. 硕士论文. 扬州: 扬州大学. pp. 50.
[16] 王伟, 王嘉宇, 杨生龙, 刘进, 董晓雁, 王国骄, 陈温福 (2016). 水稻窄卷叶突变体nrl7的鉴定与基因定位. 植物学报 51, 290-295.
[17] 王文乐 (2016). 水稻卷叶突变体ocu5基因图位克隆及功能研究. 硕士论文. 北京: 中国农业科学院. pp. 1.
[18] 夏令, 陈亮, 郭迟鸣, 张红心, 赵政, 沈明山, 陈亮 (2007). 一个新的水稻矮秆突变体sd-sl的遗传与基因定位研究. 厦门大学学报(自然科学版) 46, 847-851.
doi: 10.3321/j.issn:0438-0479.2007.06.023
[19] 徐静, 王莉, 钱前, 张光恒 (2013). 水稻叶片形态建成分子调控机制研究进展. 作物学报 39, 767-774.
doi: 10.3724/SP.J.1006.2013.00767
[20] 许扬 (2016). 水稻控制花粉管生长基因OsCNGC13的图位克隆及功能分析和水稻卷叶基因OsZHD1的功能研究. 硕士论文. 南京: 南京农业大学. pp. 82.
[21] 姚健 (2012). 水稻卷叶突变体的遗传分析和基因定位研究. 硕士论文. 扬州: 扬州大学. pp. 46.
[22] 余东, 吴海滨, 杨文韬, 巩鹏涛, 李有志, 赵德刚 (2008). 水稻单侧卷叶突变体B157遗传分析及基因初步定位. 分子植物育种 6, 220-226.
[23] 袁隆平 (1997). 杂交水稻超高产育种. 杂交水稻 12(6), 4-9.
[24] 张俊杰 (2015). 水稻卷叶突变体sll2的遗传分析及泡状细胞发育调控研究. 博士论文. 南京: 南京农业大学. pp. 34.
[25] 张礼霞, 刘合芹, 于新, 王友林, 范宏环, 金庆生, 王建军 (2014). 水稻卷叶突变体rl15(t)的生理学分析及基因定位. 中国农业科学 47, 2881-2888.
doi: 10.3864/j.issn.0578-1752.2014.14.018
[26] 张小惠, 秦亚芝, 张迎信, 占小登, 张振华, 沈希宏, 程式华, 曹立勇, 吴先军 (2015). 水稻窄卷叶突变体Nrl3(t)的基因定位. 中国水稻科学 29, 595-600.
[27] 赵芳明, 魏霞, 马玲, 桑贤春, 王楠, 张长伟, 凌英华, 何光华 (2015). 水稻生育后期卷叶突变体lrl1的鉴定及基因定位和候选基因预测. 科学通报 60, 3133-3143.
doi: 10.1360/n972015-00712
[28] 邹良平, 张治国, 起登凤, 孙建波, 路铁刚, 彭明 (2015). 一份水稻叶片反卷突变体的遗传分析及电镜显微观察. 植物学报 50, 191-197.
doi: 10.3724/SP.J.1259.2015.00191
[29] Adedze YMN, Wei XJ, Sheng ZH, Jiao GA, Tang SQ, Hu PS (2017). Characterization of a rice dwarf and narrow leaf 2 mutant. Biol Plantarum 61, 85-94.
[30] Chen QL, Xie QJ, Gao J, Wang WY, Sun B, Liu BH, Zhu HT, Peng HF, Zhao HB, Liu CH, Wang J, Zhang JL, Zhang GQ, Zhang ZM (2015). Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot 66, 6047-6058.
[31] Duan MJ, Sun ZZ, Shu LP, Tan YN, Yu D, Sun XW, Liu RF, Li YJ, Gong SY, Yuan DY (2013). Genetic analysis of an elite super-hybrid rice parent using high-density SNP markers.Rice 6, 21.
doi: 10.1186/1939-8433-6-21 pmid: 24279921
[32] Fang LK, Zhao FM, Cong YF, Sang XC, Du Q, Wang DZ, Li YF, Ling YH, Yang ZL, He GH (2012). Rolling-leaf14 is a 2OG-Fe (II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves.Plant Biotechnol J 10, 524-532.
doi: 10.1111/j.1467-7652.2012.00679.x pmid: 22329407
[33] Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008). NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279, 499-507.
[34] Guo LB, Qian Q, Zeng DL, Dong GL, Teng S, Zhu LH (2004). Genetic dissection for leaf correlative traits of rice (Oryza sativa L.) under drought stress. J Genet Genomics 31, 275-280.
doi: 10.1088/1009-0630/6/5/011 pmid: 15195567
[35] Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y (2009). The ADAXIALIZED LEAF 1 gene functions in leaf and embryonic pattern formation in rice. italic>Dev Biol 334, 345-354.
[36] Hu J, Zhu L, Zeng DL, Gao ZY, Guo LB, Fang YX, Zhang GH, Dong GJ, Yan MX, Liu J, Qian Q (2010). Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73, 283-292.
[37] Huang CJ, Hu GJ, Li FF, Li YQ, Wu JX, Zhou XP (2013). NbPHAN, a MYB transcriptional factor, regulates leaf development and affects drought tolerance in Nicotiana benthamiana. Physiol Plantarum 149, 297-309.
doi: 10.1111/ppl.12031 pmid: 23387304
[38] Jing W, Cao CJ, Shen LK, Zhang HS, Jing GQ, Zhang WH (2017). Characterization and fine mapping of a rice leaf-rolling mutant deficient in commissural veins.Crop Sci 57, 2595-2604.
doi: 10.2135/cropsci2017.04.0227
[39] Khush GS, Kinoshita T, Toenniessen GH (1991). Rice karyotype, marker genes, and linkage groups. Rice Biotechnol 3, 83-108.
[40] Li C, Zou XH, Zhang CY, Shao QH, Liu J, Liu B, Li HY, Zhao T (2016). OsLBD3-7 overexpression induced Adaxially rolled leaves in rice. PLoS One 11, e0156413.
doi: 10.1371/journal.pone.0156413 pmid: 4892467
[41] Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An LS, Zhang JL (2010). Overexpression ofACL1 (abaxially curled leaf 1) increased Bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant 3, 807-817.
[42] Li WQ, Zhang MJ, Gan PF, Qiao L, Yang SQ, Miao H, Wang GF, Zhang MM, Liu WT, Li HF, Shi CH, Chen KM (2017). CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice. Plant J 92, 904-923.
doi: 10.1111/tpj.13728 pmid: 28960566
[43] Liang R, Qin R, Zeng DD, Zheng X, Jin XL, Shi CH (2016). Phenotype analysis and gene mapping of narrow and rolling leaf mutant nrl4 in rice(Oryza sativa L.). Sci Agric Sin 49, 3863-3873.
doi: 10.3864/j.issn.0578-1752.2016.20.001
[44] Liu XF, Li M, Liu K, Tang D, Sun MF, Li YF, Shen Y, Du GJ, Cheng ZK (2016). Semi-Rolled Leaf 2 modulates rice leaf rolling by regulating abaxial side cell differentiation. J Exp Bot 67, 2139-2150.
doi: 10.1093/jxb/erw029 pmid: 26873975
[45] Luo YZ, Zhao FM, Sang XC, Ling YH, Yang ZL, He GH (2009). Genetic analysis and gene mapping of a novel rolled-leaf mutant rl12(t) in rice. Acta Agron Sin 35, 1967-1972.
doi: 10.1016/S1875-2780(08)60114-5
[46] Luo ZK, Yang ZL, Zhong BQ, Li YH, Xie R, Zhao FM, Ling YH, He GH (2007). Genetic analysis and fine mapping of a dynamic rolled leaf gene RL10(t) in rice(Oryza sativa L). Genome 50, 811.
[47] Park SJ, Moon JC, Yong CP, Kim JH, Kim DS, Jang CS (2014). Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses.J Plant Physiol 171, 1645-1653.
doi: 10.1016/j.jplph.2014.08.002 pmid: 25173451
[48] Shi ZY, Wang J, Wan XS, Shen GZ, Wang XQ, Zhang JL (2007). Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta 226, 99-108.
doi: 10.1007/s00425-006-0472-0 pmid: 17216479
[49] Wang DZ, Sang XC, You XQ, Wang Z, Wang QS, Zhao FM, Ling YH, Li YF, He GH (2011). Genetic analysis and gene mapping of a novel and rolled leaf mutant nrl2(t) in rice(Oryza sativa L). italic>Acta Agron Sin 37, 1159-1166.
[50] Wu R, Li S, He S, Wassmann F, Yu C, Qin G, Schreiber L, Qu LJ, Gu H (2011). CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis. Plant Cell 23, 3392-3411.
doi: 10.1105/tpc.111.088625 pmid: 21954461
[51] Xiang JJ, Zhang GH, Qian Q, Xue HW (2012). SEMI- ROLLED LEAF 1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol 159, 1488-1500.
doi: 10.1104/pp.112.199968 pmid: 22715111
[52] Xie ZW, Sun W, Yin L, Zhao JF, Yuan SJ, Zhang WH, Li XY (2013). Phenotypic and genetic analyses of a novel adaxially-rolled leaf mutant in rice.Acta Agron Sinica 39, 1970-1978.
doi: 10.3724/SP.J.1006.2013.01970
[53] Xu Y, Wang YH, Long QZ, Huang JX, Wang YL, Zhou KN, Zheng M, Sun J, Chen H, Chen SH, Jiang L, Wang CM, Wan JM (2014). Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice.Planta 239, 803-816.
doi: 10.1007/s00425-013-2009-7 pmid: 24385091
[54] Yan C, Yan S, Zhang ZQ, Liang GH, Lu J F, Gu MH (2006). Genetic analysis and gene fine mapping for a rice novel mutant rl9(t) with rolling leaf character. Chin Sci Bull 51, 63-69.
doi: 10.1007/s11434-005-1142-5
[55] Yang CH, Li DY, Liu X, Ji CJ, Hao LL, Zhao XF, Li XB, Chen CY, Cheng ZK, Zhu LH (2014). OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol 14, 158.
doi: 10.1186/1471-2229-14-158 pmid: 24906444
[56] Yi JC, Liu LN, Cao YP, Li JZ, Mei MT (2013). Cloning, characterization and expression of OsFMO(t) in rice encoding a flavin monooxygenase. J Genet 92, 471-480.
doi: 10.1007/s12041-013-0297-0 pmid: 24371168
[57] Yu HP, Ruan BP, Wang Z, Ren DY, Zhang Y, Leng YJ, Zeng DL, Hu J, Zhang GH, Zhu L, Gao ZY, Chen G, Guo LB, Chen WF, Qian Q (2017). Fine mapping of a novel defective glume 1 (dg1) mutant, which affects vegetative and spikelet development in rice.Front Plant Sci 8, 486.
doi: 10.3389/fpls.2017.00486 pmid: 5382164
[58] Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009). SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development.Plant Cell 21, 719-735.
doi: 10.1105/tpc.108.061457
[59] Zhang JJ, Wu SY, Jiang L, Wang JL, Zhang X, Guo XP, Wu CY, Wan JM, Thiel G (2015). A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice(Oryza sativa L). Plant Biol 17, 437-448.
doi: 10.1111/plb.12255 pmid: 25213398
[60] Zhou Y, Fang YX, Zhu JY, Li SQ, Gu F, Gu MH, Liang GH (2010). Genetic analysis and gene fine mapping of a rolling leaf mutant (rl11(t)) in rice(Oryza sativa L). Chin Sci Bull 55, 1763-1769.
[61] Zou LP, Sun XH, Zhang ZG, Liu P, Wu JX, Tian CJ, Qiu JL, Lu TG (2011). Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice.
[1] . A New Progress of Green Revolution: Epigenetic Modification Dual-regulated by Gibberellin and Nitrogen Supply Contributes to Breeding of High Yield and Nitrogen Use Efficiency Rice [J]. Chin Bull Bot, 2020, 55(1): 0-0.
[2] Zhang Tong,Guo Yalu,Chen Yue,Ma Jinjiao,Lan Jinping,Yan Gaowei,Liu Yuqing,Xu Shan,Li Liyun,Liu Guozhen,Dou Shijuan. Expression Characterization of Rice OsPR10A and Its Function in Response to Drought Stress [J]. Chin Bull Bot, 2019, 54(6): 711-722.
[3] Tian Huaidong, Li Jing, Tian Baohua, Niu Pengfei, Li Zhen, Yue Zhongxiao, Qu Yajuan, Jiang Jianfang, Wang Guangyuan, Cen Huihui, Li Nan, Yan Feng. Method for N-methyl-N-nitrosourea Mutagenesis on Hermaphroditic Germ Cells of Rice [J]. Chin Bull Bot, 2019, 54(5): 625-633.
[4] Zhou Chun, Jiao Ran, Hu Ping, Lin Han, Hu Juan, Xu Na, Wu Xianmei, Rao Yuchun, Wang Yuexing. Gene Mapping and Candidate Gene Analysis of Rice Early Senescence Mutant LS-es1 [J]. Chin Bull Bot, 2019, 54(5): 606-619.
[5] Zhang Shuo, Wu Changyin. Long Noncoding RNA Ef-cd Promotes Maturity Without Yield Penalty in Rice [J]. Chin Bull Bot, 2019, 54(5): 550-553.
[6] Li Weitao, He Min, Chen Xuewei. Discovery of ZmFBL41 Chang7-2 as A Key Weapon against Banded Leaf and Sheath Blight Resistance in Maize [J]. Chin Bull Bot, 2019, 54(5): 547-549.
[7] Liu Jin, Yao Xiaoyun, Yu Liqin, Li Hui, Zhou Huiying, Wang Jiayu, Li Maomao. Detection and Analysis of Dynamic Quantitative Trait Loci at Three Years for Seed Storability in Rice (Oryza sativa) [J]. Chin Bull Bot, 2019, 54(4): 464-473.
[8] Liu Dongfeng, Tang Yongyan, Luo Shengtao, Luo Wei, Li Zhitao, Chong Kang, Xu Yunyuan. Identification of Chilling Tolerance of Rice Seedlings by Cold Water Bath [J]. Chin Bull Bot, 2019, 54(4): 509-514.
[9] Cheng Xinjie, Yu Hengxiu, Cheng Zhukuan. Protocols for Analyzing Rice Meiotic Chromosomes [J]. Chin Bull Bot, 2019, 54(4): 503-508.
[10] Wang Xiaolin,Wang Ertao. NRT1.1B Connects Root Microbiota and Nitrogen Use in Rice [J]. Chin Bull Bot, 2019, 54(3): 285-287.
[11] Li Lulu, Yin Wenchao, Niu Mei, Meng Wenjing, Zhang Xiaoxing, Tong Hongning. Functional Analysis of Brassinosteroids in Salt Stress Responses in Rice [J]. Chin Bull Bot, 2019, 54(2): 185-193.
[12] Chen Lin,Lin Yan,Chen Pengfei,Wang Shaohua,Ding Yanfeng. Effect of Iron Deficiency on the Protein Profile of Rice (Oryza sativa) Phloem Sap [J]. Chin Bull Bot, 2019, 54(2): 194-207.
[13] Ye Wenlan,Ma Guolan,Yuan liyanan,Zheng Shiyi,Cheng Linqiao,Fang Yuan,Rao Yuchun. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice [J]. Chin Bull Bot, 2019, 54(2): 277-283.
[14] Yang Dewei,Wang Mo,Han Libo,Tang Dingzhong,Li Shengping. Progress of Cloning and Breeding Application of Blast Resistance Genes in Rice and Avirulence Genes in Blast Fungi [J]. Chin Bull Bot, 2019, 54(2): 265-276.
[15] Zhu Li, Qian Qian. Astaxanthin Functional Rice: New Idea of Biofortification, New Perspectives for High-quality Rice Breeding [J]. Chin Bull Bot, 2019, 54(1): 4-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Qin Wei-cheng Li Jian-zhong. The Application Effects of the Cold-resister CR-4 in Our Area's Rice Seedling Culture[J]. Chin Bull Bot, 1994, 11(特辑): 102 -104 .
[2] Ningguang Dong, Ying Gao, Wei Wang, Weilun Yin, Dong Pei. Immunogold Silver Localization of Indole-3-acetic Acid (IAA) During the Rhizogenesis of In Vitro Poplar[J]. Chin Bull Bot, 2011, 46(3): 324 -330 .
[3] HONG Wei CAO Jia-Shu. The Function of FLC in Vernalization Process[J]. Chin Bull Bot, 2002, 19(04): 406 -411 .
[4] . Development and Utilization of Plant Resources II[J]. Chin Bull Bot, 1994, 11(02): 53 -57 .
[5] FAN Qing-Shu ZHAO Jian-Cheng YU Shu-Hong LI Xiu-Qin. Progress in Study on Spore Germination and Protonema Development of the Bryophytes[J]. Chin Bull Bot, 2003, 20(03): 280 -286 .
[6] LIU Jian-Wu LIU Ning. The Progress in Study on Development of Fern Gametophytes and Differentiation of Sex Organ[J]. Chin Bull Bot, 2001, 18(02): 149 -157 .
[7] An Cheng-xi. Studies on the Chemical Constituents of Essential of Aiania-Tanuifolia[J]. Chin Bull Bot, 1997, 14(增刊): 74 -76 .
[8] Nie Wei. Observation on some Biological Characteristics of Juncellus serotinus in Transplanted Rice[J]. Chin Bull Bot, 1988, 5(01): 34 -36 .
[9] . Mechanism of Plant Photosynthetic Acclimation to Elevated Atmospheric CO2[J]. Chin Bull Bot, 2005, 22(04): 486 -493 .
[10] WEI Ze-Xiu, LIANG Yin-Li, YAMADA Satoshi, ZENG Xing-Quan, ZHOU Mao-Juan, HUANG Mao-Lin, WU Yan. RELATION OF SOIL MICROBIAL DIVERSITY TO TOMATO YIELD AND QUALITY UNDER DIFFERENT SOIL WATER CONDITIONS AND FERTILIZATIONS[J]. Chin J Plan Ecolo, 2009, 33(3): 580 -586 .