植物学报 ›› 2019, Vol. 54 ›› Issue (1): 23-36.doi: 10.11983/CBB18064

• 研究报告 • 上一篇    下一篇

异源过表达OsATG8b基因提高转基因拟南芥的 氮/碳胁迫耐受性和产量

甄晓溪,刘浩然,李鑫,徐凡(),张文忠()   

  1. 沈阳农业大学水稻研究所, 农业部东北水稻生物学与遗传育种重点实验室, 北方超级粳稻育种教育部重点实验室, 沈阳 110866
  • 收稿日期:2018-03-12 接受日期:2018-07-16 出版日期:2019-01-01 发布日期:2019-07-31
  • 通讯作者: 徐凡,张文忠 E-mail:celiafanfan@163.com;zwzhong@126.com
  • 基金资助:
    国家重点研发计划(2018YFD0200200)

Heterologous Overexpression of Autophagy-related Gene OsATG8b from Rice Confers Tolerance to Nitrogen/Carbon Starvation and Increases Yield in Arabidopsis

Zhen Xiaoxi,Liu Haoran,Li Xin,Xu Fan(),Zhang Wenzhong()   

  1. Key Laboratory of Northern Japonica Rice Genetics and Breedings, Ministry of Education, Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture, Rice Research Institute, Shenyang Agriculture University, Shenyang 110866, China
  • Received:2018-03-12 Accepted:2018-07-16 Online:2019-01-01 Published:2019-07-31
  • Contact: Xu Fan,Zhang Wenzhong E-mail:celiafanfan@163.com;zwzhong@126.com

摘要:

氮素是参与植物生长发育的一种重要元素, 对植物的产量和品质具有重要作用。自噬是真核生物中一种保守的细胞组分降解-循环再利用途径, 在植物生长发育和籽粒形成期间的氮素再动员过程中发挥作用。我们鉴定到水稻(Oryza sativa)自噬核心基因OsATG8b, 并获得2个独立的35S-OsATG8b转基因拟南芥(Arabidopsis thaliana)纯合株系。研究表明OsATG8b基因响应低氮胁迫处理, 过表达OsATG8b基因促进转基因拟南芥的生长发育, 使莲座叶增大, 单株产量显著提高(15.16%)。进一步研究表明, 过表达OsATG8b能够显著增强缺氮胁迫下转基因拟南芥叶片中的自噬活性, 从而有效缓解氮胁迫和碳胁迫对转基因拟南芥造成的生长抑制。因此, OsATG8b是提高氮素利用效率和产量的候选基因。

关键词: 自噬, OsATG8b, 氮素再利用, 产量

Abstract:

Nitrogen is an essential element for plant growth and development and plays an important role in plant yield and quality. Autophagy is a conserved degradation-recycle pathway of cellular components in eukaryotes that plays an important role in nitrogen remobilization during plant growth and grain formation. We identified an autophagy core gene OsATG8b in rice and obtained 2 independent 35S-OsATG8b transgenic Arabidopsis homozygous lines. The expression of OsATG8b responded to nitrogen starvation in rice. Overexpression of OsATG8b promoted the growth and development of transgenic Arabidopsis, with rosette leaves larger than wild-type leaves. In addition, the yield increased significantly, by 15.16%. In addition, overexpression of OsATG8b could significantly enhance autophagic activity in leaves of transgenic Arabidopsis under nitrogen deficiency and effectively alleviate the growth inhibition of transgenic Arabidopsis caused by nitrogen and carbon stress. OsATG8b may be a good candidate gene for increasing nitrogen use efficiency and yield.

Key words: autophagy, OsATG8b, nitrogen remobilization, yield

表1

引物信息"

Primer name Sequence (5′-3′) Function
cOsATG8b-F CCATTCAAGTGGATGGCCAAGAGCTCGTTCAAGC Gene cloning
cOsATG8b-R GGTGACCTAGAGCAGCCCAAAGGTGTTCTCG Gene cloning
cpOsATG8b-F AAGCTTAAAATTAAATAAGACGAACAGTCAAACG Gene cloning
cpOsATG8b-R CCATGGCGCTCCTTCCTGCACACAAT Gene cloning
rtOsATG8b-F GCTGATCTTACCGTTGGGCA Real-time RT-PCR
rtOsATG8b-R ATCAGAGCAGCTGTTGGTGG Real-time RT-PCR
rtAtAMT1-F GCCTCTGCTGACTACTCCAACTT Real-time RT-PCR
rtAtAMT1-R GACCAGAACCAGTGAGAGACGA Real-time RT-PCR
rtAtNR1-F AGGATGGGCTAGTAAGCATAAGG Real-time RT-PCR
rtAtNR1-R GCAAACTGAATCATAGGCGGTG Real-time RT-PCR
rtAtGS2-F CACCAAACCTTACTCTCTGACA Real-time RT-PCR
rtAtGS2-R CACTATCTTCACCAGGTGCTTG Real-time RT-PCR
rtAtGDH1-F GCTTTAGCAGCAACAAACAGAA Real-time RT-PCR
rtAtGDH1-R TGAGCCAATGCGTTCACTTC Real-time RT-PCR
rtACTIN1-F ACCATTGGTGCTGAGCGTTT Real-time RT-PCR
rtACTIN1-R CGCAGCTTCCATTCCTATGAA Real-time RT-PCR
rtTIP41-F GTATGAAGATGAACTGGCTGACAAT Real-time RT-PCR
rtTIP41-R ATCAACTCTCAGCCAAAATCGCAAG Real-time RT-PCR

图1

氮胁迫处理诱导水稻幼苗叶片及根中OsATG8b基因的表达 (A) 全氮条件下生长14天的水稻幼苗转移至全氮(NS)、低氮(NL)和缺氮(ND)条件下生长1和3天时叶片中OsATG8b基因的表达量; (B) 全氮、低氮和缺氮条件下生长1和3天的水稻根系中OsATG8b基因的表达量。图中数据为平均值±标准差, n=16, 实验经3次生物学重复。**表示全氮条件与低氮和缺氮条件相比差异显著(P<0.01) (Student’s t-test)。"

表2

野生型和35S-OsATG8b转基因拟南芥的抽薹及开花 时间"

WT L-13 L-14
Bloting time (d) 36.56±1.58 30.78±2.07** 31.39±1.91**
Flowering time (d) 42.67±1.75 35.94±1.98** 36.61±1.94**

表3

野生型和35S-OsATG8b转基因拟南芥的产量性状"

Total number of siliques Yield per plant (mg) Thousand grain weight (mg)
WT 35.74±3.86 85.34±7.89 14.87±0.23
L-13 46.26±3.13** 100.13±6.02** 16.36±0.21**
L-14 48.22±3.62** 99.77±5.76** 17.54±0.41**

图2

过表达OsATG8b促进转基因拟南芥生长发育 将苗龄8天的野生型(WT)和35S-OsATG8b转基因拟南芥幼苗移入蛭石-营养土(1:3, v/v)中。(A) 苗龄14天的35S-OsATG8b转基因拟南芥和WT幼苗中OsATG8b的表达水平; (B) 由上至下依次为移苗后10、17和24天的拟南芥表型; (C) 移苗后42天的表型; (D) 不同苗龄的35S-OsATG8b转基因拟南芥和WT的最大莲座叶半径; (E) 株高; (F) 总叶绿素含量; (G) 可溶性蛋白含量。Days: 萌发后天数。图中数据为平均值±标准差, n=24, * P<0.05, ** P<0.01 (Student’s t-test), 实验经3次生物学重复。Bars=1 cm"

图3

过表达OsATG8b促进转基因拟南芥抵抗缺氮胁迫 (A) 将苗龄7天的35S-OsATG8b转基因和野生型(WT)拟南芥幼苗分别移入全氮(NS)和缺氮(ND)1/2MS培养基中培养9天后的表型; (B)-(D) 分别为全氮(NS)和缺氮(ND)处理9天的35S-OsATG8b转基因和WT拟南芥幼苗的鲜重, 叶绿素和可溶性蛋白含量; (E) 苗龄7天的35S-OsATG8b转基因和WT拟南芥幼苗全氮(NS)和缺氮(ND)垂直培养9天后的表型; (F)-(H) 分别为全氮(NS)和缺氮(ND)处理9天的35S-OsATG8b转基因和WT拟南芥幼苗的主根长、地上部和地下部鲜重; (I), (J) 分别为苗龄10天的ProOsATG8b-GUS转基因拟南芥经缺氮处理和10 μmol·L-1水杨酸(SA)处理24小时后的GUS组织化学染色结果。Mock代表未经处理的拟南芥。数据为平均值±标准差, n=16, *和**分别表示各转基因株系与WT之间差异显著(P<0.05)和极显著(P<0.01) (Student’s t-test), 实验经3次生物学重复。Bars=5 mm"

图4

过表达OsATG8b促进转基因拟南芥抵抗黑暗诱导的碳胁迫 (A) 对苗龄7天的35S-OsATG8b转基因拟南芥和野生型(WT)黑暗处理10天后记录表型(左为处理前, 右为处理后); (B) 叶绿素含量测定。数据为平均值±标准差, n=10, *表示各转基因株系与WT之间差异显著(P<0.05) (Student’s t-test), 实验经3次生物学重复。Bars=5 mm"

图5

缺氮条件下过表达OsATG8b转基因拟南芥中的自噬活性增加 将苗龄7天的35S-OsATG8b转基因(L-14)和野生型(WT)拟南芥幼苗转移至含有1 μmol·L-1 ConA的缺氮培养液中处理12小时后进行MDC染色, 于激光共聚焦显微镜下观察自噬体荧光。Bars=10 μm"

图6

过表达OsATG8b转基因拟南芥中氮代谢关键基因的表达变化 将7天苗龄的35S-OsATG8b转基因和野生型(WT)拟南芥移至全氮(NS)和缺氮(ND) 1/2MS培养基处理14天。(A) 35S-OsATG8b转基因和WT拟南芥中地上部氮代谢相关基因相对表达水平; (B) 地下部氮代谢相关基因相对表达水平。数据为平均值±标准差, n=10, *和**分别表示各转基因株系与WT之间差异显著(P<0.05)和极显著(P<0.01) (Student’s t-test), 实验经3次生物学重复。"

1 黄晓, 李发强 ( 2016). 细胞自噬在植物细胞程序性死亡中的作用. 植物学报 51, 859-862.
doi: 10.11983/CBB16011
2 景红娟, 周广舟, 谭晓荣, 平康康, 任雪建 ( 2012). 活性氧对植物自噬调控的研究进展. 植物学报 47, 534-542.
doi: 10.3724/SP.J.1259.2012.00534
3 刘洋, 张静, 王秋玲, 侯岁稳 ( 2018). 植物细胞自噬研究进展. 植物学报 53, 5-16.
4 任晨霞, 龚清秋 ( 2014). 细胞自噬在植物碳氮营养中作用的研究进展. 中国细胞生物学学报 36, 407-414.
5 Arnon DI ( 1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.Plant Physiol 24, 1-15.
6 Avila-Ospina L, Moison M, Yoshimoto K, Masclaux- Daubresse C ( 2014). Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65, 3799-3811.
7 Biederbick A, Kern HF, Els?sser HP ( 1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles.Eur J Cell Biol 66, 3-14.
doi: 10.1089/dna.1995.14.87 pmid: 7750517
8 Bradford MM ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
doi: 10.1016/0003-2697(76)90527-3 pmid: 942051
9 Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V ( 2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23, 873-894.
10 Chardon F, No?l V, Masclaux-Daubresse C ( 2012). Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot 63, 3401-3412.
doi: 10.1093/jxb/err353 pmid: 22231501
11 Clough SJ, Bent AF ( 1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J 16, 735-743.
12 Contento AL, Xiong Y, Bassham DC ( 2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 42, 598-608.
doi: 10.1111/j.1365-313X.2005.02396.x pmid: 15860017
13 Feng YC, He D, Yao ZY, Klionsky DJ ( 2014). The machi- nery of macroautophagy. Cell Res 24, 24-41.
14 Good AG, Shrawat AK, Muench DG ( 2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9, 597-605.
doi: 10.1016/j.tplants.2004.10.008 pmid: 15564127
15 Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux- Daubresse C ( 2013). Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol 199, 683-694.
16 Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-Daubresse C ( 2012). Autophagy machi- nery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol 194, 732-740.
17 Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T ( 2008). Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.Plant Physiol 148, 142-155.
doi: 10.1104/pp.108.122770
18 Izumi M, Hidema J, Makino A, Ishida H ( 2013). Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol 161, 1682-1693.
doi: 10.2307/41942799 pmid: 23457226
19 Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H ( 2015). Establishment of monito- ring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiol 167, 1307-1320.
doi: 10.1104/pp.114.254078 pmid: 25717038
20 Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J ( 2007). In winter wheat ( Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers.Field Crops Res 102, 22-32.
doi: 10.1016/j.fcr.2007.01.002
21 Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA ( 2011). A holistic view of nitrogen acquisition in plants. J Exp Bot 62, 1455-1466.
22 Krapp A ( 2015). Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25, 115-122.
doi: 10.1016/j.pbi.2015.05.010 pmid: 26037390
23 Li FQ, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD ( 2015 a). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27, 1389-1408.
doi: 10.1105/tpc.15.00158 pmid: 25944100
24 Li WW, Chen M, Wang EH, Hu LQ, Hawkesford MJ, Zhong L, Chen Z, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ ( 2016). Genome-wide analysis of autophagy-associated genes in foxtail millet ( Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.BMC Genomics 17, 797.
doi: 10.1186/s12864-016-3113-4 pmid: 5062844
25 Li WW, Chen M, Zhong L, Liu JM, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ ( 2015 b). Overexpression of the autophagy-related gene SiATG8a from foxtail millet( Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem Biophys Res Com- mun 468, 800-806.
26 Liu D, Gong QQ, Ma YY, Li PL, Li JP, Yang SH, Yuan LL, Yu YQ, Pan DD, Xu F, Wang NN ( 2010). Cpseca, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61, 1655-1669.
doi: 10.1093/jxb/erq033 pmid: 20194926
27 Liu YM, Bassham DC ( 2012). Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63, 215-237.
doi: 10.1146/annurev-arplant-042811-105441 pmid: 22242963
28 Makino A, Osmond B ( 1991). Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96, 355-362.
doi: 10.1104/pp.96.2.355 pmid: 16668193
29 Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A ( 2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105, 1141-1157.
doi: 10.1093/aob/mcq028 pmid: 2887065
30 Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M ( 2008). Leaf nitrogen remobilisation for plant development and gr- ain filling. Plant Biol 10, 23-36.
doi: 10.1111/j.1438-8677.2008.00097.x pmid: 18721309
31 Meyer C, Stitt M ( 2001). Nitrate reduction and signaling. In: Lea PJ, Morot-Gaudry JF, eds. Plant Nitrogen. Berlin, Heidelberg: Springer. pp. 37-59.
32 Moriyasu Y, Ohsumi Y ( 1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111, 1233-1241.
doi: 10.1104/pp.111.4.1233 pmid: 12226358
33 Ohsumi Y ( 2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216.
34 Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ ( 2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41, 831-844.
doi: 10.1111/j.1365-313X.2005.02346.x pmid: 15743448
35 Patrick JW, Offler CE ( 2001). Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52, 551-564.
doi: 10.1093/jexbot/52.356.551 pmid: 11373304
36 Rentsch D, Schmidt S, Tegeder M ( 2007). Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581, 2281-2289.
doi: 10.1016/j.febslet.2007.04.013 pmid: 17466985
37 Roberts IN, Caputo C, Criado MV, Funk C ( 2012). Senescence-associated proteases in plants. Physiol Plant 145, 130-139.
doi: 10.1111/j.1399-3054.2012.01574.x pmid: 22242903
38 Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G ( 2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59, 4029-4043.
doi: 10.1093/jxb/ern244 pmid: 2576633
39 Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD ( 2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways.Plant Physiol 138, 2097-2110.
40 Tsukada M, Ohsumi Y ( 1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae.FEBS Lett 333, 169-174.
41 Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H ( 2015). Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol 168, 60-73.
42 Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A ( 2009). Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149, 885-893.
doi: 10.1104/pp.108.130013
43 Walch-Liu P, Filleur S, Gan YB, Forde BG ( 2005). Signaling mechanisms integrating root and shoot responses to ch- anges in the nitrogen supply. Photosynth Res 83, 239-250.
doi: 10.1007/s11120-004-2080-9 pmid: 16143854
44 Wang P, Sun X, Jia X, Wang N, Gong XQ, Ma FW ( 2016). Characterization of an autophagy-related gene MdATG8i from apple.Front Plant Sci 7, 720.
doi: 10.3389/fpls.2016.00720 pmid: 4879346
45 Wang Y, Yu BJ, Zhao JP, Guo JB, Li Y, Han SJ, Huang L, Du YM, Hong YG, Tang DZ, Liu YL ( 2013). Autophagy contributes to leaf starch degradation. Plant Cell 25, 1383-1399.
46 Xia KF, Liu T, Ouyang J, Wang R, Fan T, Zhang MY ( 2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice ( Oryza sativa L.).DNA Res 18, 363-377.
doi: 10.1093/dnares/dsr024 pmid: 21795261
47 Xia TM, Xiao D, Liu D, Chai WT, Gong QQ, Wang NN ( 2012). Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis.PLoS One 7, e37217.
48 Yang XC, Bassham DC ( 2015). New insight into the mechanism and function of autophagy in plant cells. Int Rev Cell Mol Biol 320, 1-40.
doi: 10.1016/bs.ircmb.2015.07.005 pmid: 26614870
49 Yao ZY, Delorme-Axford E, Backues SK, Klionsky DJ ( 2015). Atg41/Icy2 regulates autophagosome formation. Autophagy 11, 2288-2299.
doi: 10.1080/15548627.2015.1107692 pmid: 26565778
50 Yoshimoto K ( 2012). Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53, 1355-1365.
doi: 10.1093/pcp/pcs099 pmid: 22764279
51 Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y ( 2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983.
doi: 10.1105/tpc.104.025395 pmid: 15494556
52 Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, OhsumiY, Shirasu K ( 2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914-2927.
[1] 郭倩倩 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 0-0.
[2] 严建兵. 大刍草稀有等位基因促进玉米密植高产[J]. 植物学报, 2019, 54(5): 0-0.
[3] 吴昌银. 长链非编码RNA基因Ef-cd 平衡水稻的早熟与稳产[J]. 植物学报, 2019, 54(5): 0-0.
[4] 马丹颖, 季东超, 徐勇, 陈彤, 田世平. 活性氧调控植物细胞自噬的研究进展[J]. 植物学报, 2019, 54(1): 81-92.
[5] 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628.
[6] 艾文琴, 姜瀚原, 李欣欣, 廖红. 一种高效研究大豆根瘤共生固氮的营养液栽培体系[J]. 植物学报, 2018, 53(4): 519-527.
[7] 王玉才, 张恒嘉, 邓浩亮, 王世杰, 巴玉春. 调亏灌溉对菘蓝水分利用及产量的影响[J]. 植物学报, 2018, 53(3): 322-333.
[8] 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172.
[9] 刘洋, 张静, 王秋玲, 侯岁稳. 植物细胞自噬研究进展[J]. 植物学报, 2018, 53(1): 5-16.
[10] 张晓丽, 李萍, 周彩云, 陈明霞, 赵喜亭, 李明军. 怀地黄脱毒种苗大田生长性状及产量品质[J]. 植物学报, 2017, 52(4): 474-479.
[11] 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068.
[12] 刘玉良, 郑术芝. 水稻产量相关性状驯化研究进展[J]. 植物学报, 2017, 52(1): 113-121.
[13] 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833.
[14] 黄晓, 李发强. 细胞自噬在植物细胞程序性死亡中的作用[J]. 植物学报, 2016, 51(6): 859-862.
[15] 刘飞, 邹冬生, 喻夜兰, 朱战强, 吴少平, 朱育峰. 龙须草种质资源生境特征与主要经济性状比较[J]. 生物多样性, 2016, 24(12): 1400-1407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨龙龙, 吴燕如. 西双版纳热带森林地区不同生境蜜蜂的物种多样性研究[J]. 生物多样性, 1998, 06(3): 197 -204 .
[2] . [J]. Journal of Integrative Plant Biology, 2018, 60(7): 530 -535 .
[3] 温学发, 张世春, 孙晓敏, 于贵瑞. 叶片水H218O富集的研究进展[J]. 植物生态学报, 2008, 32(4): 961 -966 .
[4] 沈泽昊, 方精云. 基于种群分布地形格局的两种水青冈生态位比较研究[J]. 植物生态学报, 2001, 25(4): 392 -398 .
[5] 李军, 王学春, 邵明安, 赵玉娟, 李小芳. 黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟[J]. 植物生态学报, 2010, 34(3): 330 -339 .
[6] 刘广才, 杨祁峰, 李隆, 孙建好. 小麦/玉米间作优势及地上部与地下部因素的相对贡献[J]. 植物生态学报, 2008, 32(2): 477 -484 .
[7] 余华, Bee-Lian ONG. 马占相思的日光合作用和日碳固定总量研究 (英文)[J]. 植物生态学报, 2003, 27(5): 624 -630 .
[8] Yihao Shi, Jiaying Huang, Tianshu Sun, Xuefei Wang, Chenqi Zhu, Yuxi Ai and Hongya Gu. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2017, 59(2): 118 -133 .
[9] Hong Jian ming, Huang Qing ni, Qiu Ze sheng, Liu Xiang lin, Yin Li ping and Chai Xiao qing. Studies on Nitrate Reductase in Plasma Membrane of Maize Roots[J]. Journal of Integrative Plant Biology, 1995, 37(12): .
[10] 谭英1、2, 王智1、3, 隋学艺1、4, 胡光万1. 单种属弥勒苣苔属系统位置研究:基于分子和细胞学数据[J]. Plant Diversity, 2011, 33(5): 465 -476 .