植物学报 ›› 2019, Vol. 54 ›› Issue (1): 23-36.doi: 10.11983/CBB18064
Zhen Xiaoxi,Liu Haoran,Li Xin,Xu Fan(),Zhang Wenzhong(
)
摘要:
氮素是参与植物生长发育的一种重要元素, 对植物的产量和品质具有重要作用。自噬是真核生物中一种保守的细胞组分降解-循环再利用途径, 在植物生长发育和籽粒形成期间的氮素再动员过程中发挥作用。我们鉴定到水稻(Oryza sativa)自噬核心基因OsATG8b, 并获得2个独立的35S-OsATG8b转基因拟南芥(Arabidopsis thaliana)纯合株系。研究表明OsATG8b基因响应低氮胁迫处理, 过表达OsATG8b基因促进转基因拟南芥的生长发育, 使莲座叶增大, 单株产量显著提高(15.16%)。进一步研究表明, 过表达OsATG8b能够显著增强缺氮胁迫下转基因拟南芥叶片中的自噬活性, 从而有效缓解氮胁迫和碳胁迫对转基因拟南芥造成的生长抑制。因此, OsATG8b是提高氮素利用效率和产量的候选基因。
1 |
黄晓, 李发强 ( 2016). 细胞自噬在植物细胞程序性死亡中的作用. 植物学报 51, 859-862.
doi: 10.11983/CBB16011 |
2 |
景红娟, 周广舟, 谭晓荣, 平康康, 任雪建 ( 2012). 活性氧对植物自噬调控的研究进展. 植物学报 47, 534-542.
doi: 10.3724/SP.J.1259.2012.00534 |
3 | 刘洋, 张静, 王秋玲, 侯岁稳 ( 2018). 植物细胞自噬研究进展. 植物学报 53, 5-16. |
4 | 任晨霞, 龚清秋 ( 2014). 细胞自噬在植物碳氮营养中作用的研究进展. 中国细胞生物学学报 36, 407-414. |
5 | Arnon DI ( 1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.Plant Physiol 24, 1-15. |
6 | Avila-Ospina L, Moison M, Yoshimoto K, Masclaux- Daubresse C ( 2014). Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65, 3799-3811. |
7 |
Biederbick A, Kern HF, Els?sser HP ( 1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles.Eur J Cell Biol 66, 3-14.
doi: 10.1089/dna.1995.14.87 pmid: 7750517 |
8 |
Bradford MM ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
doi: 10.1016/0003-2697(76)90527-3 pmid: 942051 |
9 | Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V ( 2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23, 873-894. |
10 |
Chardon F, No?l V, Masclaux-Daubresse C ( 2012). Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J Exp Bot 63, 3401-3412.
doi: 10.1093/jxb/err353 pmid: 22231501 |
11 | Clough SJ, Bent AF ( 1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.Plant J 16, 735-743. |
12 |
Contento AL, Xiong Y, Bassham DC ( 2005). Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 42, 598-608.
doi: 10.1111/j.1365-313X.2005.02396.x pmid: 15860017 |
13 | Feng YC, He D, Yao ZY, Klionsky DJ ( 2014). The machi- nery of macroautophagy. Cell Res 24, 24-41. |
14 |
Good AG, Shrawat AK, Muench DG ( 2004). Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9, 597-605.
doi: 10.1016/j.tplants.2004.10.008 pmid: 15564127 |
15 | Guiboileau A, Avila-Ospina L, Yoshimoto K, Soulay F, Azzopardi M, Marmagne A, Lothier J, Masclaux- Daubresse C ( 2013). Physiological and metabolic consequences of autophagy deficiency for the management of nitrogen and protein resources in Arabidopsis leaves depending on nitrate availability. New Phytol 199, 683-694. |
16 | Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-Daubresse C ( 2012). Autophagy machi- nery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol 194, 732-740. |
17 |
Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T ( 2008). Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process.Plant Physiol 148, 142-155.
doi: 10.1104/pp.108.122770 |
18 |
Izumi M, Hidema J, Makino A, Ishida H ( 2013). Autophagy contributes to nighttime energy availability for growth in Arabidopsis. Plant Physiol 161, 1682-1693.
doi: 10.2307/41942799 pmid: 23457226 |
19 |
Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H ( 2015). Establishment of monito- ring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Plant Physiol 167, 1307-1320.
doi: 10.1104/pp.114.254078 pmid: 25717038 |
20 |
Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J ( 2007). In winter wheat ( Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers.Field Crops Res 102, 22-32.
doi: 10.1016/j.fcr.2007.01.002 |
21 | Kraiser T, Gras DE, Gutiérrez AG, González B, Gutiérrez RA ( 2011). A holistic view of nitrogen acquisition in plants. J Exp Bot 62, 1455-1466. |
22 |
Krapp A ( 2015). Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25, 115-122.
doi: 10.1016/j.pbi.2015.05.010 pmid: 26037390 |
23 |
Li FQ, Chung T, Pennington JG, Federico ML, Kaeppler HF, Kaeppler SM, Otegui MS, Vierstra RD ( 2015 a). Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27, 1389-1408.
doi: 10.1105/tpc.15.00158 pmid: 25944100 |
24 |
Li WW, Chen M, Wang EH, Hu LQ, Hawkesford MJ, Zhong L, Chen Z, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ ( 2016). Genome-wide analysis of autophagy-associated genes in foxtail millet ( Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.BMC Genomics 17, 797.
doi: 10.1186/s12864-016-3113-4 pmid: 5062844 |
25 | Li WW, Chen M, Zhong L, Liu JM, Xu ZS, Li LC, Zhou YB, Guo CH, Ma YZ ( 2015 b). Overexpression of the autophagy-related gene SiATG8a from foxtail millet( Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis. Biochem Biophys Res Com- mun 468, 800-806. |
26 |
Liu D, Gong QQ, Ma YY, Li PL, Li JP, Yang SH, Yuan LL, Yu YQ, Pan DD, Xu F, Wang NN ( 2010). Cpseca, a thylakoid protein translocase subunit, is essential for photosynthetic development in Arabidopsis. J Exp Bot 61, 1655-1669.
doi: 10.1093/jxb/erq033 pmid: 20194926 |
27 |
Liu YM, Bassham DC ( 2012). Autophagy: pathways for self-eating in plant cells. Annu Rev Plant Biol 63, 215-237.
doi: 10.1146/annurev-arplant-042811-105441 pmid: 22242963 |
28 |
Makino A, Osmond B ( 1991). Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96, 355-362.
doi: 10.1104/pp.96.2.355 pmid: 16668193 |
29 |
Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A ( 2010). Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105, 1141-1157.
doi: 10.1093/aob/mcq028 pmid: 2887065 |
30 |
Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M ( 2008). Leaf nitrogen remobilisation for plant development and gr- ain filling. Plant Biol 10, 23-36.
doi: 10.1111/j.1438-8677.2008.00097.x pmid: 18721309 |
31 | Meyer C, Stitt M ( 2001). Nitrate reduction and signaling. In: Lea PJ, Morot-Gaudry JF, eds. Plant Nitrogen. Berlin, Heidelberg: Springer. pp. 37-59. |
32 |
Moriyasu Y, Ohsumi Y ( 1996). Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111, 1233-1241.
doi: 10.1104/pp.111.4.1233 pmid: 12226358 |
33 | Ohsumi Y ( 2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216. |
34 |
Otegui MS, Noh YS, Martínez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ ( 2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41, 831-844.
doi: 10.1111/j.1365-313X.2005.02346.x pmid: 15743448 |
35 |
Patrick JW, Offler CE ( 2001). Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52, 551-564.
doi: 10.1093/jexbot/52.356.551 pmid: 11373304 |
36 |
Rentsch D, Schmidt S, Tegeder M ( 2007). Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581, 2281-2289.
doi: 10.1016/j.febslet.2007.04.013 pmid: 17466985 |
37 |
Roberts IN, Caputo C, Criado MV, Funk C ( 2012). Senescence-associated proteases in plants. Physiol Plant 145, 130-139.
doi: 10.1111/j.1399-3054.2012.01574.x pmid: 22242903 |
38 |
Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G ( 2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59, 4029-4043.
doi: 10.1093/jxb/ern244 pmid: 2576633 |
39 | Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD ( 2005). Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways.Plant Physiol 138, 2097-2110. |
40 | Tsukada M, Ohsumi Y ( 1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae.FEBS Lett 333, 169-174. |
41 | Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H ( 2015). Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice. Plant Physiol 168, 60-73. |
42 |
Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A ( 2009). Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149, 885-893.
doi: 10.1104/pp.108.130013 |
43 |
Walch-Liu P, Filleur S, Gan YB, Forde BG ( 2005). Signaling mechanisms integrating root and shoot responses to ch- anges in the nitrogen supply. Photosynth Res 83, 239-250.
doi: 10.1007/s11120-004-2080-9 pmid: 16143854 |
44 |
Wang P, Sun X, Jia X, Wang N, Gong XQ, Ma FW ( 2016). Characterization of an autophagy-related gene MdATG8i from apple.Front Plant Sci 7, 720.
doi: 10.3389/fpls.2016.00720 pmid: 4879346 |
45 | Wang Y, Yu BJ, Zhao JP, Guo JB, Li Y, Han SJ, Huang L, Du YM, Hong YG, Tang DZ, Liu YL ( 2013). Autophagy contributes to leaf starch degradation. Plant Cell 25, 1383-1399. |
46 |
Xia KF, Liu T, Ouyang J, Wang R, Fan T, Zhang MY ( 2011). Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice ( Oryza sativa L.).DNA Res 18, 363-377.
doi: 10.1093/dnares/dsr024 pmid: 21795261 |
47 | Xia TM, Xiao D, Liu D, Chai WT, Gong QQ, Wang NN ( 2012). Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis.PLoS One 7, e37217. |
48 |
Yang XC, Bassham DC ( 2015). New insight into the mechanism and function of autophagy in plant cells. Int Rev Cell Mol Biol 320, 1-40.
doi: 10.1016/bs.ircmb.2015.07.005 pmid: 26614870 |
49 |
Yao ZY, Delorme-Axford E, Backues SK, Klionsky DJ ( 2015). Atg41/Icy2 regulates autophagosome formation. Autophagy 11, 2288-2299.
doi: 10.1080/15548627.2015.1107692 pmid: 26565778 |
50 |
Yoshimoto K ( 2012). Beginning to understand autophagy, an intracellular self-degradation system in plants. Plant Cell Physiol 53, 1355-1365.
doi: 10.1093/pcp/pcs099 pmid: 22764279 |
51 |
Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y ( 2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967-2983.
doi: 10.1105/tpc.104.025395 pmid: 15494556 |
52 | Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, OhsumiY, Shirasu K ( 2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914-2927. |
[1] | 郭倩倩 周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 0-0. |
[2] | 严建兵. 大刍草稀有等位基因促进玉米密植高产[J]. 植物学报, 2019, 54(5): 0-0. |
[3] | 吴昌银. 长链非编码RNA基因Ef-cd 平衡水稻的早熟与稳产[J]. 植物学报, 2019, 54(5): 0-0. |
[4] | 马丹颖, 季东超, 徐勇, 陈彤, 田世平. 活性氧调控植物细胞自噬的研究进展[J]. 植物学报, 2019, 54(1): 81-92. |
[5] | 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628. |
[6] | 艾文琴, 姜瀚原, 李欣欣, 廖红. 一种高效研究大豆根瘤共生固氮的营养液栽培体系[J]. 植物学报, 2018, 53(4): 519-527. |
[7] | 王玉才, 张恒嘉, 邓浩亮, 王世杰, 巴玉春. 调亏灌溉对菘蓝水分利用及产量的影响[J]. 植物学报, 2018, 53(3): 322-333. |
[8] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
[9] | 刘洋, 张静, 王秋玲, 侯岁稳. 植物细胞自噬研究进展[J]. 植物学报, 2018, 53(1): 5-16. |
[10] | 张晓丽, 李萍, 周彩云, 陈明霞, 赵喜亭, 李明军. 怀地黄脱毒种苗大田生长性状及产量品质[J]. 植物学报, 2017, 52(4): 474-479. |
[11] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[12] | 刘玉良, 郑术芝. 水稻产量相关性状驯化研究进展[J]. 植物学报, 2017, 52(1): 113-121. |
[13] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[14] | 黄晓, 李发强. 细胞自噬在植物细胞程序性死亡中的作用[J]. 植物学报, 2016, 51(6): 859-862. |
[15] | 刘飞, 邹冬生, 喻夜兰, 朱战强, 吴少平, 朱育峰. 龙须草种质资源生境特征与主要经济性状比较[J]. 生物多样性, 2016, 24(12): 1400-1407. |
|