植物学报 ›› 2020, Vol. 55 ›› Issue (6): 705-714.DOI: 10.11983/CBB20056
王泽义1, 张恒嘉1,*(), 王玉才1, 陈谢田1, 巴玉春2
收稿日期:
2020-04-03
接受日期:
2020-07-02
出版日期:
2020-11-01
发布日期:
2020-11-11
通讯作者:
张恒嘉
作者简介:
*E-mail: zhanghj@gsau.edu.cn基金资助:
Zeyi Wang1, Hengjia Zhang1,*(), Yucai Wang1, Xietian Chen1, Yuchun Ba2
Received:
2020-04-03
Accepted:
2020-07-02
Online:
2020-11-01
Published:
2020-11-11
Contact:
Hengjia Zhang
摘要: 以北板蓝根(Isatis tinctoria)为研究对象, 于2018年在河西走廊中部干旱绿洲开展水分控制试验, 设轻、中、重度亏水及充分供水4个控水水平, 通过大田试验探究膜下滴灌条件下亏缺灌溉对板蓝根叶片生理指标、灌水量及产量的影响, 为河西地区板蓝根灌溉策略的制定提供理论依据。结果表明, 板蓝根叶片净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)因营养和肉质根生长期受到亏缺灌溉影响而显著下降, 降幅随亏水程度的加剧而增大, 轻度亏水处理对叶片光合能力的影响不显著, 且在复水之后存在一定的补偿响应; 轻度亏水处理的产量与对照(8 348.91 kg·hm-2)相比无显著差异, 而其它处理的产量均有不同程度的下降; 灌水量与产量的拟合关系呈二次抛物线, 即产量不随灌水量的增加而升高。因此, 综合分析表明膜下滴灌调亏降低了板蓝根叶片的光合能力, 而营养生长期轻度亏缺灌溉可以节水并提高产量和灌溉效率。
王泽义, 张恒嘉, 王玉才, 陈谢田, 巴玉春. 亏缺灌溉对板蓝根叶片光合生理特性及产量的影响. 植物学报, 2020, 55(6): 705-714.
Zeyi Wang, Hengjia Zhang, Yucai Wang, Xietian Chen, Yuchun Ba. Effects of Deficit Irrigation on the Photosynthetic and Physiological Characteristics of Leaves and Yield of Isatis tinctoria. Chinese Bulletin of Botany, 2020, 55(6): 705-714.
Month | Maximum temperature (°C) | Minimum temperature (°C) | Ground temperature (°C) | Precipitation (mm) | Daylight hours (h) | Wind speed (m·s-1) | Relative humidity (%) |
---|---|---|---|---|---|---|---|
5 | 19.5 | 5.8 | 19.1 | 20.0 | 279.3 | 3.2 | 41 |
6 | 23.1 | 11.5 | 23.9 | 32.8 | 223.4 | 3.0 | 49 |
7 | 25.2 | 12.7 | 23.2 | 60.4 | 238.2 | 2.8 | 64 |
8 | 22.4 | 12.3 | 20.7 | 53.9 | 167.7 | 2.5 | 72 |
9 | 16.8 | 5.9 | 14.1 | 50.2 | 227.8 | 2.8 | 61 |
10 | 11.8 | -1.1 | 7.1 | 4.9 | 277.8 | 3.2 | 47 |
表1 试验年度气象因子
Table 1 Meteorological factors in the test year
Month | Maximum temperature (°C) | Minimum temperature (°C) | Ground temperature (°C) | Precipitation (mm) | Daylight hours (h) | Wind speed (m·s-1) | Relative humidity (%) |
---|---|---|---|---|---|---|---|
5 | 19.5 | 5.8 | 19.1 | 20.0 | 279.3 | 3.2 | 41 |
6 | 23.1 | 11.5 | 23.9 | 32.8 | 223.4 | 3.0 | 49 |
7 | 25.2 | 12.7 | 23.2 | 60.4 | 238.2 | 2.8 | 64 |
8 | 22.4 | 12.3 | 20.7 | 53.9 | 167.7 | 2.5 | 72 |
9 | 16.8 | 5.9 | 14.1 | 50.2 | 227.8 | 2.8 | 61 |
10 | 11.8 | -1.1 | 7.1 | 4.9 | 277.8 | 3.2 | 47 |
Process number | Process name | Seedling (%) | Vegetative growth (%) | Fleshy root growth (%) | Fleshy root maturity (%) |
---|---|---|---|---|---|
V1G0 | Vegetative growth stages with slight water deficit treatment | 75-85 | 65-75 | 75-85 | 75-85 |
V2G0 | Vegetative growth stages with moderate water deficit treatment | 75-85 | 55-65 | 75-85 | 75-85 |
V3G0 | Vegetative growth stages with severe water deficit treatment | 75-85 | 45-55 | 75-85 | 75-85 |
V1G1 | Vegetative growth stages with slight water deficit treatment, fleshy root growth stages with slight water deficit treatment | 75-85 | 65-75 | 65-75 | 75-85 |
V1G2 | Vegetative growth stages with slight water deficit treatment, fleshy root growth stages with moderate water deficit treatment | 75-85 | 65-75 | 55-65 | 75-85 |
V2G1 | Vegetative growth stages with moderate water deficit treatment, fleshy root growth stages with slight water deficit treatment | 75-85 | 55-65 | 65-75 | 75-85 |
V2G2 | Vegetative growth stages with moderate water deficit treatment, fleshy root growth stages with moderate water deficit treatment | 75-85 | 55-65 | 55-65 | 75-85 |
V3G1 | Vegetative growth stages with severe water deficit treatment, fleshy root growth stages with slight water deficit treatment | 75-85 | 45-55 | 65-75 | 75-85 |
V3G2 | Vegetative growth stages with severe water deficit treatment, fleshy root growth stages with moderate water deficit treatment | 75-85 | 45-55 | 55-65 | 75-85 |
CK | Control treatment | 75-85 | 75-85 | 75-85 | 75-85 |
表2 试验设计
Table 2 Experimental design
Process number | Process name | Seedling (%) | Vegetative growth (%) | Fleshy root growth (%) | Fleshy root maturity (%) |
---|---|---|---|---|---|
V1G0 | Vegetative growth stages with slight water deficit treatment | 75-85 | 65-75 | 75-85 | 75-85 |
V2G0 | Vegetative growth stages with moderate water deficit treatment | 75-85 | 55-65 | 75-85 | 75-85 |
V3G0 | Vegetative growth stages with severe water deficit treatment | 75-85 | 45-55 | 75-85 | 75-85 |
V1G1 | Vegetative growth stages with slight water deficit treatment, fleshy root growth stages with slight water deficit treatment | 75-85 | 65-75 | 65-75 | 75-85 |
V1G2 | Vegetative growth stages with slight water deficit treatment, fleshy root growth stages with moderate water deficit treatment | 75-85 | 65-75 | 55-65 | 75-85 |
V2G1 | Vegetative growth stages with moderate water deficit treatment, fleshy root growth stages with slight water deficit treatment | 75-85 | 55-65 | 65-75 | 75-85 |
V2G2 | Vegetative growth stages with moderate water deficit treatment, fleshy root growth stages with moderate water deficit treatment | 75-85 | 55-65 | 55-65 | 75-85 |
V3G1 | Vegetative growth stages with severe water deficit treatment, fleshy root growth stages with slight water deficit treatment | 75-85 | 45-55 | 65-75 | 75-85 |
V3G2 | Vegetative growth stages with severe water deficit treatment, fleshy root growth stages with moderate water deficit treatment | 75-85 | 45-55 | 55-65 | 75-85 |
CK | Control treatment | 75-85 | 75-85 | 75-85 | 75-85 |
图1 亏缺灌溉对板蓝根叶片光合特性的影响 (A) 叶面积指数; (B) 净光合速率; (C) 蒸腾速率; (D) 气孔导度。V1G0、V2G0、V3G0、V1G1、V1G2、V2G1、V2G2、V3G1、V3G2及CK同表2。不同小写字母表示差异显著(P<0.05)。
Figure 1 Effects of deficit irrigation on photosynthetic characteristics of Isatis tinctoria leaves (A) Leaf area index; (B) Net photosynthetic rate; (C) Transpiration rate; (D) Stomatal conductance. V1G0, V2G0, V3G0, V1G1, V1G2, V2G1, V2G2, V3G1, V3G2, and CK are the same as Table 2. Different lowercase letters indicate significant differences (P<0.05).
图2 亏缺灌溉下的板蓝根 (A) 不同控水条件下的板蓝根植株(bars=8 cm); (B) 板蓝根试验田。V1G0、V2G0、V3G0、V1G1、V1G2、V2G1、V2G2、V3G1、V3G2及CK同表2。
Figure 2 Phenotype of Isatis tinctoria under deficit irrigation (A) Isatis tinctoria plants with different water control treatment (bars=8 cm); (B) Isatis tinctoria experimental field. V1G0, V2G0, V3G0, V1G1, V1G2, V2G1, V2G2, V3G1, V3G2, and CK are the same as Table 2.
Treatments | Irrigation amount (m3·hm-2) | Total biomass (kg·hm-2) | Economic yield (kg·hm-2) | Water saving rate (%) | Increasing yield rate (%) |
---|---|---|---|---|---|
V1G0 | 153.02 | 12577.33 | 8475.38 a | 7.96 | 1.51 |
V2G0 | 150.87 | 11116.52 | 7638.14 b | 9.26 | -8.51 |
V3G0 | 133.16 | 10487.87 | 6986.12 d | 19.91 | -16.32 |
V1G1 | 151.81 | 12185.38 | 8308.44 a | 8.69 | -0.48 |
V1G2 | 147.04 | 10603.39 | 7147.23 bc | 11.56 | -14.39 |
V2G1 | 143.74 | 10577.01 | 7029.39 c | 13.55 | -15.80 |
V2G2 | 137.64 | 10212.44 | 6923.72 d | 17.21 | -17.07 |
V3G1 | 119.63 | 8988.38 | 5895.17 e | 28.05 | -29.39 |
V3G2 | 116.08 | 8798.07 | 5784.38 e | 30.18 | -30.72 |
CK | 166.26 | 12591.06 | 8348.91 a | - | - |
表3 亏缺灌溉下板蓝根的产量
Table 3 Yield of Isatis tinctoria under deficit irrigation
Treatments | Irrigation amount (m3·hm-2) | Total biomass (kg·hm-2) | Economic yield (kg·hm-2) | Water saving rate (%) | Increasing yield rate (%) |
---|---|---|---|---|---|
V1G0 | 153.02 | 12577.33 | 8475.38 a | 7.96 | 1.51 |
V2G0 | 150.87 | 11116.52 | 7638.14 b | 9.26 | -8.51 |
V3G0 | 133.16 | 10487.87 | 6986.12 d | 19.91 | -16.32 |
V1G1 | 151.81 | 12185.38 | 8308.44 a | 8.69 | -0.48 |
V1G2 | 147.04 | 10603.39 | 7147.23 bc | 11.56 | -14.39 |
V2G1 | 143.74 | 10577.01 | 7029.39 c | 13.55 | -15.80 |
V2G2 | 137.64 | 10212.44 | 6923.72 d | 17.21 | -17.07 |
V3G1 | 119.63 | 8988.38 | 5895.17 e | 28.05 | -29.39 |
V3G2 | 116.08 | 8798.07 | 5784.38 e | 30.18 | -30.72 |
CK | 166.26 | 12591.06 | 8348.91 a | - | - |
[1] | 柏军华, 王克如, 初振东, 陈兵, 李少昆 (2005). 叶面积测定方法的比较研究. 石河子大学学报(自然科学版) 23, 216-218. |
[2] | 蔡焕杰, 康绍忠, 张振华, 柴红敏, 胡笑涛, 王健 (2000). 作物调亏灌溉的适宜时间与调亏程度的研究. 农业工程学报 16(3), 24-27. |
[3] | 董浩, 毕军, 夏光利, 周勋波, 陈雨海 (2014). 灌溉和种植方式对冬小麦生育后期旗叶光合特性及产量的影响. 应用生态学报 25, 2259-2266. |
[4] | 杜宗绪, 刘英, 高嗣慧 (2005). 板蓝根栽培与贮藏加工新技术. 北京: 中国农业出版社. pp. 7-10. |
[5] | 房玉林, 孙伟, 万力, 惠竹梅, 刘旭, 张振文 (2013). 调亏灌溉对酿酒葡萄生长及果实品质的影响. 中国农业科学 46, 2730-2738. |
[6] | 郭巧生 (2009). 药用植物栽培学 北京: 高等教育出版社. pp. 26-33. |
[7] | 韩占江, 于振文, 王东, 王西芝, 许振柱 (2009). 调亏灌溉对冬小麦耗水特性和水分利用效率的影响. 应用生态学报 20, 2671-2677. |
[8] | 侯格平, 甄东升, 姜青龙, 焦阳 (2015). 民乐县板蓝根高产优质栽培试验研究. 农业科技通讯 (9), 132-134. |
[9] | 黄兴法, 李光永, 王小伟, 曾德超, 孙乃健 (2001). 充分灌与调亏灌溉条件下苹果树微喷灌的耗水量研究. 农业工程学报 17(5), 43-47. |
[10] | 寇丹, 苏德荣, 吴迪, 李岩 (2014). 地下调亏滴灌对紫花苜蓿耗水、产量和品质的影响. 农业工程学报 30, 116-123. |
[11] | 梁建萍, 贾小云, 刘亚令, 吴云, 周然, 冯前进 (2016). 干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响. 生态学报 36, 4415-4422. |
[12] | 刘长利, 王文全 (2008). 干旱胁迫对甘草酸积累影响的物质组分分配研究. 中国中药杂志 33, 2852-2853. |
[13] | 刘小飞, 李彪, 孟兆江, 刘祖贵, 张寄阳 (2019). 隔沟调亏灌溉对冬小麦旗叶生理特性与产量形成的影响. 农业机械学报 50, 320-328. |
[14] | 刘译锴, 郑明珠, 马莉, 刘铁军, 杨有俊, 刘金荣 (2015). 调亏灌溉对多年生黑麦草光合特性的影响及阈值的确定. 草业科学 32, 570-580. |
[15] | 孟兆江, 段爱旺, 王晓森, 高阳, 申孝军 (2016). 调亏灌溉对棉花根冠生长关系的影响. 农业机械学报 47(4), 99-104. |
[16] | 孟兆江, 孙景生, 段爱旺, 刘祖贵, 王和洲 (2010). 调亏灌溉条件下冬小麦籽粒灌浆特征及其模拟模型. 农业工程学报 26, 18-23. |
[17] | 孟兆江, 孙景生, 刘祖贵, 王晓森, 王景雷, 高阳, 段爱旺 (2011). 调亏灌溉对冬小麦不同生育阶段光合速率的影响. 麦类作物学报 31, 1130-1135. |
[18] | 邵光成, 刘娜, 陈磊 (2008). 温室辣椒时空亏缺灌溉需水特性与产量的试验. 农业机械学报 39(4), 117-121. |
[19] | 时学双, 李法虎, 闫宝莹, 何东, 普布多吉, 曲珍 (2015). 不同生育期水分亏缺对春青稞水分利用和产量的影响. 农业机械学报 46(10), 144-151, 265. |
[20] | 唐昊 (2018). 中医药与养生保健探讨. 养生保健指南 (49), 282. |
[21] | 王瑞, 杨海英, 杨琪伟, 黄山君, 王峥涛 (2010). 板蓝根的质量标准研究. 中草药 41, 478-480. |
[22] | 王世杰, 张恒嘉, 巴玉春, 王玉才, 黄彩霞, 薛道信, 李福强 (2018). 调亏灌溉对膜下滴灌辣椒生长及水分利用的影响. 干旱地区农业研究 36(3), 31-38. |
[23] | 王玉才 (2018). 河西绿洲菘蓝水分高效利用及调亏灌溉模式优化研究. 博士论文. 兰州: 甘肃农业大学. pp. 59-63. |
[24] | 王玉才, 邓浩亮, 李福强, 王泽义, 张万恒, 黄彩霞, 张恒嘉 (2015). 调亏灌溉对菘蓝光合特性及品质的影响. 水土保持学报 31(6), 291-295, 325. |
[25] | 王玉才, 张恒嘉, 邓浩亮, 王世杰, 巴玉春 (2018). 调亏灌溉对菘蓝水分利用及产量的影响. 植物学报 53, 322-333. |
[26] | 武阳, 王伟, 赵智, 黄兴法, 范云涛, 苏柳芸 (2012). 调亏灌溉对香梨叶片光合速率及水分利用效率的影响. 农业机械学报 43(11), 80-86. |
[27] | 袁淑芬, 陈源泉, 闫鹏, 陶志强, 崔吉晓, 李超, 隋鹏 (2014). 水分胁迫对华北春玉米生育进程及物质生产力的影响. 中国农业大学学报 19(5), 22-28. |
[28] | 张恒嘉, 李晶 (2013). 绿洲膜下滴灌调亏马铃薯光合生理特性与水分利用. 农业机械学报 44(10), 143-151. |
[29] | 张凯, 陈年来, 韩国君, 张正 (2015). 调亏灌溉下番茄叶片气体交换日变化和光响应特性. 中国沙漠 35, 923-929. |
[30] | 郑健, 蔡焕杰, 陈新明, 王健 (2009). 调亏灌溉对温室小型西瓜水分利用效率及品质的影响. 核农学报 23, 159-164. |
[31] | 周丽, 王永明, 周达, 罗延丽, 张新慧 (2015). 干旱胁迫对银柴胡药材活性成分含量的影响研究. 时珍国医国药 26, 1463-1465. |
[32] | 邹慧, 黄兴法, 龚时宏 (2012). 水分调亏对地下滴灌夏玉米田水热动态的影响. 农业机械学报 43(9), 72-77. |
[33] | Hooshmand M, Albaji M, Nasab SB, Ansari NA (2019). The effect of deficit irrigation on yield and yield components of greenhouse tomato ( Solanum lycopersicum) in hydroponic culture in Ahvaz region, Iran. Sci Hortic 254, 84-90. |
[34] | Moradi P, Ford-Lloyd B, Pritchard J (2014). Plant-water responses of different medicinal plant thyme ( Thymus spp.) species to drought stress condition. Aust J Crop Sci 8, 666-673. |
[35] | Özmen S, Kanber R, Sarı N, Ünlü M (2015). The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon. J Integr Agric 14, 966-976. |
[36] | Selahvarzi Y, Zamani Z, Fatahi R, Talaei AR (2017). Effect of deficit irrigation on flowering and fruit properties of pomegranate ( Punica granatum cv. Shahvar). Agric Water Manage 192, 189-197. |
[37] | Sezen SM, Yazar A, Tekin S (2019). Physiological response of red pepper to different irrigation regimes under drip irrigation in the Mediterranean region of Turkey. Sci Hortic 245, 280-288. |
[38] | Trentacoste ER, Calderón FJ, Contreras-Zanessi O, Galarza W, Banco AP, Puertas CM (2019). Effect of regulated deficit irrigation during the vegetative growth period on shoot elongation and oil yield components in olive hedgerows (cv. Arbosana) pruned annually on alternate sides in San Juan, Argentina. Irrigation Sci 37, 533-546. |
[39] | Zhao Z, Wang W, Wu Y, Xu MX, Huang XF, Ma YJ, Ren DX (2015). Leaf physiological responses of mature pear trees to regulated deficit irrigation in field conditions under desert climate. Sci Hortic 187, 122-130. |
[40] | Zhou Q, Ju CX, Wang ZQ, Zhang H, Liu LJ, Yang JC, Zhang JH (2017). Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation. J Integr Agric 16, 1028-1043. |
[1] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[2] | 严语萍, 俞晓琦, 任德勇, 钱前. 水稻穗粒数遗传机制与育种利用[J]. 植物学报, 2023, 58(3): 359-372. |
[3] | 叶卫军, 张阴, 王沛然, 张玲玲, 田东丰, 吴泽江, 周斌. 绿豆5个产量相关性状的QTL分析[J]. 植物学报, 2023, 58(1): 150-158. |
[4] | 刘晓龙, 季平, 杨洪涛, 丁永电, 付佳玲, 梁江霞, 余聪聪. 脱落酸对水稻抽穗开花期高温胁迫的诱抗效应[J]. 植物学报, 2022, 57(5): 596-610. |
[5] | 王雷, 种康. 鱼和熊掌的选择: 反向重复序列变异介导的玉米环境适应与产量平衡[J]. 植物学报, 2022, 57(5): 555-558. |
[6] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[7] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[8] | 周俭民. 免疫信号轴揭示水稻与病原菌斗争的秘密[J]. 植物学报, 2021, 56(5): 513-515. |
[9] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
[10] | 刘杰, 严建兵. 大刍草稀有等位基因促进玉米密植高产[J]. 植物学报, 2019, 54(5): 554-557. |
[11] | 郭倩倩,周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673. |
[12] | 张硕, 吴昌银. 长链非编码RNA基因Ef-cd调控水稻早熟与稳产[J]. 植物学报, 2019, 54(5): 550-553. |
[13] | 甄晓溪,刘浩然,李鑫,徐凡,张文忠. 异源过表达OsATG8b基因提高转基因拟南芥的 氮/碳胁迫耐受性和产量[J]. 植物学报, 2019, 54(1): 23-36. |
[14] | 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628. |
[15] | 艾文琴, 姜瀚原, 李欣欣, 廖红. 一种高效研究大豆根瘤共生固氮的营养液栽培体系[J]. 植物学报, 2018, 53(4): 519-527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||