植物学报

• 专题论坛 • 上一篇    下一篇

生长素输出载体PIN蛋白的质膜定位机制

曹文杰, 李贵生*   

  1. 吉首大学植物资源保护与利用湖南省高校重点实验室, 吉首 416000
  • 收稿日期:2016-01-25 修回日期:2016-02-01 出版日期:2016-03-01 发布日期:2016-03-31
  • 通讯作者: 李贵生 E-mail:guishengl@aliyun.com
  • 基金资助:

    国家自然科学基金(No.31260056)、吉首大学科研启动基金(No.8811910)、湖南省重点学科建设项目(No.JSU0713Z11)和湖南省高校科技创新团队支持计划(No.201208Z02)

Plasma Membrane Positioning Mechanism of Auxin Efflux Carrier PIN Proteins

Wenjie Cao, Guisheng Li*   

  1. Plant Rescources Protection and Utilization Hunan Province College Key Laboratory, Jishou University, Jishou 416000, China
  • Received:2016-01-25 Revised:2016-02-01 Online:2016-03-01 Published:2016-03-31
  • Contact: Guisheng Li E-mail:guishengl@aliyun.com

摘要:

生长素浓度梯度影响植物个体及其器官的形态建成, 而PIN (PIN-FORMED)蛋白决定组织中的生长素流向。细胞质膜的脂筏特性是PIN蛋白在质膜上不均匀分布的基础。与此同时, 网格蛋白介导的胞吞、蛋白质的磷酸化/去磷酸化甚至基因的转录调控影响PIN蛋白的这种极性定位。另外, 在多细胞植物起源之时, PIN蛋白可能经历了从内质网膜定位到质膜定位的转变。

Abstract:

Auxin concentration affects the morphological establishment of plant body and its organs, while PIN (PINFORMED) proteins determine the direction of auxin stream within tissues. The nature of lipid rafts of cellular plasma membrane underlies the uneven distribution of PINs in the plasma membrane. Meanwhile, clathrin-mediated endocytyosis, proteins phosphorylation/dephosphorylation and even genes transcriptional regulation affect this polar location of PINs. Additionally, at the time when multicellular plants emerge, PINs may undergo a transition from endoplasmic reticulum membrane to plasma membrane positioning.

Bao M, Bian H, Zha Y, Li F, Sun Y, Bai B, Chen Z, Wang J, Zhu M, Han N (2014). miR396a-Mediated basic helix-loop-helix transcription factor bHLH74 repression acts as a regulator for root growth in Arabidopsis seedlings. Plant Cell Physiol 55, 1343-1353.
Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281-297.
Che R, Tong H, Shi B, Liu Y, Fang S, Liu D, Xiao Y, Hu B, Liu L, Wang H, Zhao M, Chu C (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat Plants 2, 15195.
Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett 579, 5923-5931.
Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, Chen H, Zhu X, Li Y (2015). Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. NatPlants 2, 15203.
Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S (2015). Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat Plants 2, 15196.
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34, D140-144.
Hammond SM, Bernstein E, Beach D, Hannon GJ (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophilacells. Nature 404, 293-296.
Jones-Rhoades MW, Bartel DP (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14, 787-799.
Kim VN (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376-385.
Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
Liang G, He H, Li Y, Wang F, Yu D (2014). Molecular mechanism of microRNA396 mediating pistil development in Arabidopsis. Plant Physiol 164, 249-258.
Liu D, Song Y, Chen Z, Yu D (2009). Ectopic of miR396 suppresses GRF target gene and alters leaf growth in Arabidopsis. Physiol Plant 136, 223-236.
Liu H, Guo S, Xu Y, Li C, Zhang Z, Zhang D, Xu S, Zhang C, Chong K (2014). OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165, 160-174.
Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14, 836-843.
Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeber B (2015). Growth-Regulating Factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8, 998-1010.
Pasquinelli A E, Ruvkun G (2002). Control of developmental timing by microRNAs and their targets. Annu Rev Cell Dev Biol 18, 495-513.
Rodriguez RE, Ercoli MF, Debernardi JM, Breakfield NW, Mecchia MA, Sabatini M, Cools T, De Veylder L, Benfey PN, Palatnik JF (2015). MicroRNA miR396 regulates the switch between stem cells and transit-amplifying cells in Arabidopsis roots. Plant Cell. doi:10.1105/tpc.15.00452
Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5, R65.
Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855-862.
Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S (2015). Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J Exp Bot 66, 4653-4667.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何关福. 中国植物化学分类学回顾和展望[J]. 植物学报, 1983, 1(02): 7 -13 .
[2] 蔡继炯 王子卿. 马尾松花粉的形态结构与成分之初探[J]. 植物学报, 1988, 5(03): 167 -169 .
[3] 赵大中 雍伟东 种康 谭克辉. 高等植物开花研究现状筒述[J]. 植物学报, 1999, 16(02): 157 -162 .
[4] 梁海泳 夏秀英 高晓蓉 苏乔. 反义4CL与UGPase双价基因在烟草中的转化及表达分析[J]. 植物学报, 2007, 24(04): 459 -464 .
[5] 张福仁 莫日根. 扫描电镜观察花粉断面结构的简易技术[J]. 植物学报, 1992, 9(03): 63 -64 .
[6] 李斐;胡勇;王帆;张珍;刘祥林;白素兰;何奕騉. 利用流式细胞仪分选拟南芥根尖发育早期非根毛细胞[J]. 植物学报, 2010, 45(04): 460 -465 .
[7] 蒋高明. 承德市城市植被历史变迁、现状特点及其经营保护方向[J]. 植物学报, 1994, 11(04): 33 -38 .
[8] 刘栓桃;赵智中;何启伟. 大白菜生物技术研究进展[J]. 植物学报, 2004, 21(06): 709 -718 .
[9] 刘静&#;魏开发&#;高志晖;李冰冰;任慧波;胡建芳;贾文锁*. 干旱胁迫下氮素营养与根信号在气孔运动调控中的协同作用[J]. 植物学报, 2008, 25(01): 34 -40 .
[10] 童哲. 继往开来,与时俱进——让《植物学通报》插上翅膀[J]. 植物学报, 2003, 20(04): 510 -511 .