Please wait a minute...
IMAGE/TABLE DETAILS
Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field
Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui
Chinese Bulletin of Botany    2017, 52 (6): 744-755.   DOI: 10.11983/CBB16242
Abstract   (1297 HTML17 PDF(pc) (641KB)(1142)  

Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.


Light
intensity (lx)
Negative air ions concentration (ion·cm-3)
Soil Calathea insignis Calathea zebrina Hippeastrum rutilum
CK S CK S CK S CK S
0 35±2 c 127±3 a 53±2 e 824400±88904 e 76±2 e 156±16 a 66±2 e 202067±24109 c
500 36±2 c 136±2 a 69±3 d 1726200±186594 d 80±4 d 275±28 a 69±3 d 298289±36482 b
1500 37±3 bc 138±2 a 79±2 c 1769911±191872 c 83±3 c 284±28 a 77±2 c 308156±36967 b
3000 37±3 bc 135±2 a 81±3 c 1831378±198645 b 80±3 d 297±30 a 79±5 c 328644±39232 a
6000 43±2 a 140±2 a 90±3 b 1813622±197187 b 106±3 b 296±30 a 93±3 b 328200±38992 a
12000 39±3 b 139±3 a 138±4 a 1895200±205601 a 128±3 a 310±31 a 134±3 a 308156±36967 b
Table 6 The negative air ion concentration of plants under pulsed electrical field stimulation in different light intensity (means± SD)
Extracts from the Article
由表6可知, 不施加脉冲电场作用时, 土壤释放负离子的能力在各光照度下变幅很小, 其释放负离子的浓度均值为35-43 ion·cm-3。3种植物释放负离子的能力随光照度的增加呈上升趋势, 尽管绝对变幅很小, 但各处理间均存在显著差异(P<0.05)(表6)。在脉冲电场作用下, 土壤和3种植物释放负离子的能力与常态下相比均有显著提高(P<0.05), 且随着光照度的增加, 植物释放负离子的能力呈升高趋势。其中以朱顶红的增幅最小, 在12 000 lx光照度下其释放负离子的浓度为黑暗状态下的1.5倍; 以绒叶肖竹芋的增幅最大, 其释放负离子的能力是0 lx下的2.0倍, 但释放负离子的浓度均值很小, 最大值仅为310 ion·cm-3。除土壤和绒叶肖竹芋外, 紫背竹芋和朱顶红在不同的光照度刺激下释放负离子的浓度均存在显著差异(P< 0.05)。在光照度为3 000-6 000 lx时, 3种植物释放负离子的能力均差异不显著。
表6
Other Images/Table from this Article