Please wait a minute...
IMAGE/TABLE DETAILS
Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field
Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui
Chinese Bulletin of Botany    2017, 52 (6): 744-755.   DOI: 10.11983/CBB16242
Abstract   (1297 HTML17 PDF(pc) (641KB)(1142)  

Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.


Code Plants Age (mon- th) Plant height× Grown bread- th (cm)
P1 Syngonium podophyllum 14 20×20
P2 Lilium brownii var. viridulum 13 70×20
P3 Agave sisalana 24 45×30
P4 Stromanthe sanguinea 12 30×30
P5 Cordyline fruticosa 14 60×50
P6 Calathea zebrina 12 40×45
P7 Hippeastrum rutilum 13 60×40
P8 Neottopteris antiqua 14 40×40
P9 Saxifraga stolonifera 12 30×30
P10 Fatsia japonica 12 50×40
Table 1 Tested plants species
Extracts from the Article
植物在自然状态下释放负离子的能力很弱, 施加脉冲电场可激发其释放能力。在密闭的玻璃箱中, 研究紫背竹芋(Stromanthe sanguinea)、绒叶肖竹芋(Calathea zebrina)和朱顶红(Hippeastrum rutilum)在常态、脉冲电场和光照刺激下释放负离子的浓度, 并观察叶片气孔特征, 结果表明: (1) 不同参数脉冲电场对植物释放负离子的能力影响不同, 每种植物均具有高效释放负离子的最佳脉冲电场, 紫背竹芋为A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms); 绒叶肖竹芋为A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1, τ =5 ms); 朱顶红为A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ =5 ms)。(2) 植物体上所储存的电压越大, 其释放负离子的能力越强。(3) 脉冲电场作用时, 植物释放负离子的能力与光照度呈正相关; 无电场刺激时两者差异不显著(P>0.05)。(4) 植物释放负离子的能力与叶片气孔特征关系密切, 脉冲电场作用下叶片气孔的开合度和气孔密度越大, 其释放能力越强。
为研究叶片形状以及植株形态对植物释放负离子的影响, 我们选取合果芋(Syngonium podophyllum Schott)、百合(Lilium brownii var. viridulum Baker)、剑麻(Agave sisalana Perr. ex Engelm.)、紫背竹芋(Stromanthe sanguinea Sond.)、朱蕉(Cordyline fruticosa (L.) A.Cheval.)、绒叶肖竹芋(Calathea zeb- rina (Sims) Lindl.)、朱顶红(Hippeastrum rutilum (Ker-Gawl.) Herb.)、大鳞巢蕨(Neottopteris antiqua (Makino) Masamune)、虎耳草(Saxifraga stolonifera Curt.)和八角金盘(Fatsia japonica (Thunb.) Decne. et Planch) 10种植物(表1)为研究对象。供试植物均购于福建漳州百花村花卉交易市场, 每种植物选取外形和长势一致的植株3棵, 作为实验的3次重复。所有植物均种植在塑料花盆(外口径23 cm, 高19 cm, 底15 cm)中, 采取统一的水肥管理和养护方法。
表1
自然状态下植物24小时释放负离子浓度的变化趋势
CK: 空白对照; P0: 盆土; P1-P10同表1。
P1-P10同表1。CK和P0同图2。同列数字后不同小写字母表示各品种间差异显著(P<0.05)。
P0: 盆土。P4、P6和P7同表1。A、B和C同表2。同列不同小写字母表示在不同参数的脉冲电场作用下同一品种间差异显著(P<0.05)。
CK: 不施加脉冲电场刺激; S: 施加最佳参数的脉冲电场刺激。P4、P6和P7同表1。同列不同小写字母表示同种植物在不同的光照处理下差异显著(P<0.5)。
Other Images/Table from this Article