Chinese Bulletin of Botany ›› 2017, Vol. 52 ›› Issue (6): 744-755.DOI: 10.11983/CBB16242
• EXPERIMENTAL COMMUNICATIONS • Previous Articles Next Articles
Wu Renye1,2, Sun Yuanfen1, Zheng Jingui1,2,*(), Deng Chuanyuan3, Ye Dapeng4, Wang Qingshui1
Received:
2016-12-06
Accepted:
2017-05-04
Online:
2017-11-01
Published:
2018-02-22
Contact:
Zheng Jingui
Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui. Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field[J]. Chinese Bulletin of Botany, 2017, 52(6): 744-755.
Code | Plants | Age (mon- th) | Plant height× Grown bread- th (cm) |
---|---|---|---|
P1 | Syngonium podophyllum | 14 | 20×20 |
P2 | Lilium brownii var. viridulum | 13 | 70×20 |
P3 | Agave sisalana | 24 | 45×30 |
P4 | Stromanthe sanguinea | 12 | 30×30 |
P5 | Cordyline fruticosa | 14 | 60×50 |
P6 | Calathea zebrina | 12 | 40×45 |
P7 | Hippeastrum rutilum | 13 | 60×40 |
P8 | Neottopteris antiqua | 14 | 40×40 |
P9 | Saxifraga stolonifera | 12 | 30×30 |
P10 | Fatsia japonica | 12 | 50×40 |
Table 1 Tested plants species
Code | Plants | Age (mon- th) | Plant height× Grown bread- th (cm) |
---|---|---|---|
P1 | Syngonium podophyllum | 14 | 20×20 |
P2 | Lilium brownii var. viridulum | 13 | 70×20 |
P3 | Agave sisalana | 24 | 45×30 |
P4 | Stromanthe sanguinea | 12 | 30×30 |
P5 | Cordyline fruticosa | 14 | 60×50 |
P6 | Calathea zebrina | 12 | 40×45 |
P7 | Hippeastrum rutilum | 13 | 60×40 |
P8 | Neottopteris antiqua | 14 | 40×40 |
P9 | Saxifraga stolonifera | 12 | 30×30 |
P10 | Fatsia japonica | 12 | 50×40 |
Figure 1 Schematic of detecting negative air ions concentration by plant in a sealed chambera: High-voltage pulsed generator; b: Pulse probe; c: Air ions detector; d: Computer; e: Glass chamber; f: Plant; g: Adjustable insulation platform
Level | Factors | ||
---|---|---|---|
A (103 V) | B (s) | C (ms) | |
1 | 8 | 0.5 | 5 |
2 | 10 | 1.0 | 35 |
3 | 15 | 1.5 | 65 |
4 | 20 | 2.0 | 90 |
Table 2 Factors and levels for orthogonal test
Level | Factors | ||
---|---|---|---|
A (103 V) | B (s) | C (ms) | |
1 | 8 | 0.5 | 5 |
2 | 10 | 1.0 | 35 |
3 | 15 | 1.5 | 65 |
4 | 20 | 2.0 | 90 |
Figure 2 The changes in negative air ions concentration over 24 h for plant varieties under normal conditionCK: P0 soil without plant; P0: Soil; P1-P10 see Table 1.
Code | 24 h mini- mum | 24 h maxi- mum | 24 h mean | Daytime mean | Nighttime mean | Max/ Min | (Day mean-night mean)/ Night mean | Day mean/Night mean |
---|---|---|---|---|---|---|---|---|
CK | 29 | 38 | 32 k | 34 | 31 | 1.31 | 0.10 | 1.1 |
P0 | 30 | 36 | 33 j | 34 | 32 | 1.2 | 0.06 | 1.06 |
P1 | 36 | 56 | 46 i | 48 | 44 | 1.56 | 0.09 | 1.09 |
P2 | 48 | 94 | 63 d | 68 | 57 | 1.96 | 0.19 | 1.19 |
P3 | 35 | 81 | 58 f | 63 | 53 | 2.31 | 0.19 | 1.19 |
P4 | 64 | 91 | 76 b | 79 | 74 | 1.42 | 0.07 | 1.07 |
P5 | 48 | 71 | 57 g | 58 | 57 | 1.48 | 0.02 | 1.02 |
P6 | 71 | 90 | 81 a | 80 | 83 | 1.27 | -0.04 | 0.96 |
P7 | 56 | 90 | 75 c | 76 | 74 | 1.61 | 0.03 | 1.03 |
P8 | 39 | 82 | 57 g | 64 | 51 | 2.1 | 0.25 | 1.25 |
P9 | 44 | 80 | 62 e | 58 | 66 | 1.82 | -0.12 | 0.88 |
P10 | 40 | 58 | 48 h | 48 | 47 | 1.45 | 0.02 | 1.02 |
Table 3 Analysis of negative air ions concentration generated by plants among 24 h in natural conditions (ion·cm-3)
Code | 24 h mini- mum | 24 h maxi- mum | 24 h mean | Daytime mean | Nighttime mean | Max/ Min | (Day mean-night mean)/ Night mean | Day mean/Night mean |
---|---|---|---|---|---|---|---|---|
CK | 29 | 38 | 32 k | 34 | 31 | 1.31 | 0.10 | 1.1 |
P0 | 30 | 36 | 33 j | 34 | 32 | 1.2 | 0.06 | 1.06 |
P1 | 36 | 56 | 46 i | 48 | 44 | 1.56 | 0.09 | 1.09 |
P2 | 48 | 94 | 63 d | 68 | 57 | 1.96 | 0.19 | 1.19 |
P3 | 35 | 81 | 58 f | 63 | 53 | 2.31 | 0.19 | 1.19 |
P4 | 64 | 91 | 76 b | 79 | 74 | 1.42 | 0.07 | 1.07 |
P5 | 48 | 71 | 57 g | 58 | 57 | 1.48 | 0.02 | 1.02 |
P6 | 71 | 90 | 81 a | 80 | 83 | 1.27 | -0.04 | 0.96 |
P7 | 56 | 90 | 75 c | 76 | 74 | 1.61 | 0.03 | 1.03 |
P8 | 39 | 82 | 57 g | 64 | 51 | 2.1 | 0.25 | 1.25 |
P9 | 44 | 80 | 62 e | 58 | 66 | 1.82 | -0.12 | 0.88 |
P10 | 40 | 58 | 48 h | 48 | 47 | 1.45 | 0.02 | 1.02 |
Treatment | Factors | Average of negative air ions concentration (ion·cm-3) | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | P0 | P4 | P6 | P7 | ||
A1B1C1 | 8 | 0.5 | 5 | 36±3 a | 452644±21866 n | 91±6 a | 8605±983 f | |
A1B2C3 | 8 | 1.0 | 65 | 38±2 a | 471667±21881 n | 92±8 a | 9581±948 f | |
A1B3C4 | 8 | 1.5 | 90 | 39±2 a | 535311±25007 l | 94±5 a | 8559±874 f | |
A1B4C2 | 8 | 2.0 | 35 | 44±2 a | 494667±27146 m | 98±8 a | 8832±543 f | |
A2B1C4 | 10 | 0.5 | 90 | 39±2 a | 795822±53569 k | 95±9 a | 20200±1478 f | |
A2B2C2 | 10 | 1.0 | 35 | 38±2 a | 822267±54244 j | 88±8 a | 22473±1381 f | |
A2B3C1 | 10 | 1.5 | 5 | 37±3 a | 813022±50909 jk | 85±7 a | 23236±2467 f | |
A2B4C3 | 10 | 2.0 | 65 | 41±3 a | 872734±55664 i | 91±4 a | 21801±1643 f | |
A3B1C2 | 15 | 0.5 | 35 | 105±2 a | 1564444±119680 d | 226±20 a | 181311±20261 e | |
A3B2C4 | 15 | 1.0 | 90 | 107±2 a | 1628244±191548 c | 250±40 a | 218444±33270 c | |
A3B3C3 | 15 | 1.5 | 65 | 109±3 a | 1730800±195344 a | 233±16 a | 191867±32167 de | |
A3B4C1 | 15 | 2.0 | 5 | 107±2 a | 1670933±187634 b | 262±28 a | 208067±34590 cd | |
A4B1C3 | 20 | 0.5 | 65 | 130±2 a | 1186667±103135 f | 170±39 a | 301933±30237 b | |
A4B2C1 | 20 | 1.0 | 5 | 129±5 a | 1264000±117184 e | 179±18 a | 330356±30322 a | |
A4B3C2 | 20 | 1.5 | 35 | 134±3 a | 1136800±83461 g | 215±33 a | 322644±29865 ab | |
A4B4C4 | 20 | 2.0 | 90 | 140±4 a | 1038133±83109 h | 164±51 a | 318156±36925 ab |
Table 4 Analysis of negative air ions concentration generated by plants upon different combinational parameters of pulsed electrical stimulation (means±SD)
Treatment | Factors | Average of negative air ions concentration (ion·cm-3) | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | P0 | P4 | P6 | P7 | ||
A1B1C1 | 8 | 0.5 | 5 | 36±3 a | 452644±21866 n | 91±6 a | 8605±983 f | |
A1B2C3 | 8 | 1.0 | 65 | 38±2 a | 471667±21881 n | 92±8 a | 9581±948 f | |
A1B3C4 | 8 | 1.5 | 90 | 39±2 a | 535311±25007 l | 94±5 a | 8559±874 f | |
A1B4C2 | 8 | 2.0 | 35 | 44±2 a | 494667±27146 m | 98±8 a | 8832±543 f | |
A2B1C4 | 10 | 0.5 | 90 | 39±2 a | 795822±53569 k | 95±9 a | 20200±1478 f | |
A2B2C2 | 10 | 1.0 | 35 | 38±2 a | 822267±54244 j | 88±8 a | 22473±1381 f | |
A2B3C1 | 10 | 1.5 | 5 | 37±3 a | 813022±50909 jk | 85±7 a | 23236±2467 f | |
A2B4C3 | 10 | 2.0 | 65 | 41±3 a | 872734±55664 i | 91±4 a | 21801±1643 f | |
A3B1C2 | 15 | 0.5 | 35 | 105±2 a | 1564444±119680 d | 226±20 a | 181311±20261 e | |
A3B2C4 | 15 | 1.0 | 90 | 107±2 a | 1628244±191548 c | 250±40 a | 218444±33270 c | |
A3B3C3 | 15 | 1.5 | 65 | 109±3 a | 1730800±195344 a | 233±16 a | 191867±32167 de | |
A3B4C1 | 15 | 2.0 | 5 | 107±2 a | 1670933±187634 b | 262±28 a | 208067±34590 cd | |
A4B1C3 | 20 | 0.5 | 65 | 130±2 a | 1186667±103135 f | 170±39 a | 301933±30237 b | |
A4B2C1 | 20 | 1.0 | 5 | 129±5 a | 1264000±117184 e | 179±18 a | 330356±30322 a | |
A4B3C2 | 20 | 1.5 | 35 | 134±3 a | 1136800±83461 g | 215±33 a | 322644±29865 ab | |
A4B4C4 | 20 | 2.0 | 90 | 140±4 a | 1038133±83109 h | 164±51 a | 318156±36925 ab |
Treatment | Calathea insignis | Calathea zebrina | Hippeastrum rutilum | |||||
---|---|---|---|---|---|---|---|---|
Voltage (103 V) | NAIC (ion·cm-3) | Voltage (103 V) | NAIC (ion·cm-3) | Voltage (103 V) | NAIC (ion·cm-3) | |||
CK | 5.13±0.33 a | 1757467±218808 a | 5.50±0.14 a | 260±33 a | 4.32±0.11 a | 362000±35957 a | ||
A | 1.78±0.10 b | 2119±88 b | 1.44±0.26 b | 152±11 a | 0.91±0.06 b | 706±29 b | ||
B | 0.51±0.03 c | 89±6 b | 0.66±0.04 c | 85±6 a | 0.50±0.06 c | 77±5 b |
Table 5 Analysis between voltage of plants and negative air ions concentration (means±SD)
Treatment | Calathea insignis | Calathea zebrina | Hippeastrum rutilum | |||||
---|---|---|---|---|---|---|---|---|
Voltage (103 V) | NAIC (ion·cm-3) | Voltage (103 V) | NAIC (ion·cm-3) | Voltage (103 V) | NAIC (ion·cm-3) | |||
CK | 5.13±0.33 a | 1757467±218808 a | 5.50±0.14 a | 260±33 a | 4.32±0.11 a | 362000±35957 a | ||
A | 1.78±0.10 b | 2119±88 b | 1.44±0.26 b | 152±11 a | 0.91±0.06 b | 706±29 b | ||
B | 0.51±0.03 c | 89±6 b | 0.66±0.04 c | 85±6 a | 0.50±0.06 c | 77±5 b |
Light intensity (lx) | Negative air ions concentration (ion·cm-3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Calathea insignis | Calathea zebrina | Hippeastrum rutilum | ||||||||
CK | S | CK | S | CK | S | CK | S | ||||
0 | 35±2 c | 127±3 a | 53±2 e | 824400±88904 e | 76±2 e | 156±16 a | 66±2 e | 202067±24109 c | |||
500 | 36±2 c | 136±2 a | 69±3 d | 1726200±186594 d | 80±4 d | 275±28 a | 69±3 d | 298289±36482 b | |||
1500 | 37±3 bc | 138±2 a | 79±2 c | 1769911±191872 c | 83±3 c | 284±28 a | 77±2 c | 308156±36967 b | |||
3000 | 37±3 bc | 135±2 a | 81±3 c | 1831378±198645 b | 80±3 d | 297±30 a | 79±5 c | 328644±39232 a | |||
6000 | 43±2 a | 140±2 a | 90±3 b | 1813622±197187 b | 106±3 b | 296±30 a | 93±3 b | 328200±38992 a | |||
12000 | 39±3 b | 139±3 a | 138±4 a | 1895200±205601 a | 128±3 a | 310±31 a | 134±3 a | 308156±36967 b |
Table 6 The negative air ion concentration of plants under pulsed electrical field stimulation in different light intensity (means± SD)
Light intensity (lx) | Negative air ions concentration (ion·cm-3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Calathea insignis | Calathea zebrina | Hippeastrum rutilum | ||||||||
CK | S | CK | S | CK | S | CK | S | ||||
0 | 35±2 c | 127±3 a | 53±2 e | 824400±88904 e | 76±2 e | 156±16 a | 66±2 e | 202067±24109 c | |||
500 | 36±2 c | 136±2 a | 69±3 d | 1726200±186594 d | 80±4 d | 275±28 a | 69±3 d | 298289±36482 b | |||
1500 | 37±3 bc | 138±2 a | 79±2 c | 1769911±191872 c | 83±3 c | 284±28 a | 77±2 c | 308156±36967 b | |||
3000 | 37±3 bc | 135±2 a | 81±3 c | 1831378±198645 b | 80±3 d | 297±30 a | 79±5 c | 328644±39232 a | |||
6000 | 43±2 a | 140±2 a | 90±3 b | 1813622±197187 b | 106±3 b | 296±30 a | 93±3 b | 328200±38992 a | |||
12000 | 39±3 b | 139±3 a | 138±4 a | 1895200±205601 a | 128±3 a | 310±31 a | 134±3 a | 308156±36967 b |
Figure 3 The stomatal shape feature of three plant species under the stimulation of high voltage pulsed electrical field with optimal combinational parameters (The shape feature of three plant species were observed under 40× objectives)(A), (B) The stomatal feature of Stromanthe sanguinea under normal and electrostimulation conditions, separately; (C), (D) The stomatal feature of Calathea zebrina under normal and electrostimulation conditions, separately; (E), (F) The stomatal feature of Hippeastrum rutilum under normal and electrostimulation conditions, separately. Bars=50 μm
Plants | Treat- ment | Length (μm) | Width (μm) | Length/ width | Perimeter | Area (μm2) | Stomatal density (·mm-2) | Negative air ions concentration (ion·cm-3) |
---|---|---|---|---|---|---|---|---|
P4 | CK | 9.7±2.47 b | 1.58±0.49 b | 6.84±3.26 a | 21.2±4.92 b | 11.98±4.64 b | 250.88±31.25 a | 80±2 b |
S | 16.09±2.81a | 2.64±0.84 ab | 6.89±3.11 a | 35.19±5.52 a | 33.01±11.27 a | 223.16±45.6 b | 1740800±195562 a | |
P6 | CK | 12.79±2.96 b | 1.38±0.4 b | 9.93±3.42 a | 27.16±6 b | 14±5.47 b | 84.28±21.45 a | 83±3 a |
S | 19.87±2.84 a | 4.27±1 a | 4.94±1.49 b | 44.62±5.85 a | 66.77±18.54 a | 87.48±19.28 a | 284±29 a | |
P7 | CK | 28.07±4.77 b | 3.84±0.41 a | 7.38±1.43 ab | 60.52±9.58 b | 84.77±17.88 b | 51.14±4.66 a | 72±2 b |
S | 33.75±2.6 a | 3.45±0.78 a | 10.46±3.62 a | 71.43±5.56 a | 91.93±23.81 a | 54.22±4.06 a | 338156±36967 a |
Table 7 The negative air ions concentration and stomata quantitative feature of plants under high voltage pulsed electrical field stimulation (means±SD)
Plants | Treat- ment | Length (μm) | Width (μm) | Length/ width | Perimeter | Area (μm2) | Stomatal density (·mm-2) | Negative air ions concentration (ion·cm-3) |
---|---|---|---|---|---|---|---|---|
P4 | CK | 9.7±2.47 b | 1.58±0.49 b | 6.84±3.26 a | 21.2±4.92 b | 11.98±4.64 b | 250.88±31.25 a | 80±2 b |
S | 16.09±2.81a | 2.64±0.84 ab | 6.89±3.11 a | 35.19±5.52 a | 33.01±11.27 a | 223.16±45.6 b | 1740800±195562 a | |
P6 | CK | 12.79±2.96 b | 1.38±0.4 b | 9.93±3.42 a | 27.16±6 b | 14±5.47 b | 84.28±21.45 a | 83±3 a |
S | 19.87±2.84 a | 4.27±1 a | 4.94±1.49 b | 44.62±5.85 a | 66.77±18.54 a | 87.48±19.28 a | 284±29 a | |
P7 | CK | 28.07±4.77 b | 3.84±0.41 a | 7.38±1.43 ab | 60.52±9.58 b | 84.77±17.88 b | 51.14±4.66 a | 72±2 b |
S | 33.75±2.6 a | 3.45±0.78 a | 10.46±3.62 a | 71.43±5.56 a | 91.93±23.81 a | 54.22±4.06 a | 338156±36967 a |
[9] | 李安伯, 张振军 (1996). 室内空气质量洁净与否的宏观评价法. 中国卫生工程学 5, 25-26. |
[10] | 李少宁, 王燕, 张玉平, 潘青华, 金万梅, 白金 (2010). 北京典型园林植物区空气负离子分布特征研究. 北京林业大学学报 32, 130-135. |
[11] | 刘新, 吴林豪, 张浩, 王祥荣 (2011). 城市绿地植物群落空气负离子浓度及影响要素研究. 复旦学报(自然科学版) 50, 206-212. |
[12] | 穆丹, 梁英辉 (2009). 佳木斯绿地空气负离子浓度及其与气象因子的关系. 应用生态学报 20, 2038-2041. |
[13] |
秦俊, 王丽勉, 高凯, 胡永红, 王玉勤, 由文辉 (2008). 植物群落对空气负离子浓度影响的研究. 华中农业大学学报 27, 303-308.
DOI URL |
[14] | 任洪昌, 闵庆文, 王维奇, 王纯, 张永勋 (2014). 福州鼓山茶园不同生境空气负离子浓度及其影响因子. 城市环境与城市生态 27, 1-6. |
[15] |
邵海荣, 贺庆棠 (2000). 森林与空气负离子. 世界林业研究 13(5), 19-23.
DOI URL |
[16] |
石彦军, 余树全, 郑庆林 (2010). 6种植物群落夏季空气负离子动态及其与气象因子的关系. 浙江林学院学报 27, 185-189.
DOI URL |
[17] |
孙继良, 么志红, 何宝华 (2010). 低强度运动匹配负离子对老年高血压患者的影响. 广州医药 41, 19-20.
DOI URL |
[18] |
王成, 郭二果, 郄光发 (2014). 北京西山典型城市森林内PM2.5动态变化规律. 生态学报 34, 5650-5658.
DOI URL |
[19] |
王薇 (2014). 空气负离子浓度分布特征及其与环境因子的关系. 生态环境学报 23, 979-984.
DOI URL |
[20] |
王晓磊, 王成 (2014). 城市森林调控空气颗粒物功能研究进展. 生态学报 34, 1910-1921.
DOI URL |
[21] | 王艳英, 邓传远, 郑金贵, 辛贵亮, 吴仁烨 (2014). 植物源负离子发生器室内应用的研究. 广州大学学报(自然科学版) 13, 29-37. |
[22] |
吴楚材, 郑群明, 钟林生 (2001). 森林游憩区空气负离子水平的研究. 林业科学 37(5), 75-81.
DOI |
[23] |
吴楚材, 钟林生 (1998). 马尾松纯林林分因子对空气负离子浓度影响的研究. 中南林学院学报 18, 70-73.
DOI URL |
[24] | 吴仁烨, 邓传远, 王彬, 黄德冰, 林丽, 黄建民, 郑金贵 (2011a). 具备释放负离子功能室内植物的种质资源研究. 中国农学通报 27(8), 91-97. |
[25] |
吴仁烨, 邓传远, 辛桂亮, 翁海勇, 杨志坚, 朱帖俊容, 郑金贵 (2014a). 植物释放负离子对室内空气质量影响分析. 安徽农业科学 42, 9491-9494.
DOI URL |
[26] | 吴仁烨, 邓传远, 杨志坚, 翁海勇, 朱帖俊容, 郑金贵 (2015). 脉冲电场作用对植物释放负离子的影响. 应用生态学报 26, 419-424. |
[27] | 吴仁烨, 黄德冰, 郭梨锦, 林丽, 黄建民, 邓传远 (2011b). 具备释放负离子功能室内植物的种质资源研究 II. 常态下室内植物负离子的释放. 亚热带农业研究 7, 1-6. |
[28] |
吴仁烨, 郑金贵, 程祖锌, 朱贵金, 阮晧然, 翁海勇 (2014b). 水稻植株释放负离子研究. 福建农林大学学报(自然科学版) 43, 512-517.
DOI URL |
[29] |
习岗, 杨运经 (2008). 电磁场对生物体系的非热效应及其作用机理. 大学物理 27(11), 50-52, 63.
DOI URL |
[30] | 杨运经, 习岗, 刘锴, 张晓辉 (2011). 应用负高压脉冲技术提高植物空气净化能力的探讨. 高电压技术 37, 190-197. |
[1] |
鲍风宇, 秦永胜, 李荣桓, 周金星, 杨军 (2013). 北京市5种典型城市绿化植物的生态保健功能分析. 中国农学通报 29(22), 26-35.
DOI URL |
[2] |
陈雷, 孙冰, 谭广文, 李子华, 陈勇, 黄应锋, 廖绍波 (2015). 广州城市绿地植物群落空气负离子特征研究. 西北林学院学报 30, 227-232.
DOI URL |
[31] |
杨运经, 习岗, 张社奇 (2009). 脉冲电场介导的植物空气负离子发射的倍增效应及其意义. 大学物理 28(12), 39-42.
DOI URL |
[32] | 曾曙才, 苏志尧, 陈北光 (2007). 广州绿地空气负离子水平及其影响因子. 生态学杂志 26, 1049-1053. |
[3] |
董莎莎, 胡梦婷, 姚玉婷, 刘鹤, 蒋文伟 (2013). 青山湖不同植物群落空气负离子效应评价. 中国园艺文摘 29(12), 65-66.
DOI URL |
[4] | 范亚民, 何平, 李建龙, 沈守云 (2005). 城市不同植被配置类型空气负离子效应评价. 生态学杂志 24, 883-886. |
[33] |
张凯旋, 张建华 (2013). 上海环城林带保健功能评价及其机制. 生态学报 33, 4189-4198.
DOI URL |
[34] | 张万超, 郑金贵, 黄龙飞, 时顺锋, 吴仁烨, 邓传远 (2015). 常态下仙人掌科植物负离子释放量的比较及其与刺数量的关系. 福建农林大学学报(自然科学版) 44, 402-407. |
[5] |
关蓓蓓, 郑思俊, 崔心红, 张帅, 何小丽, 朱义 (2016). 崇明岛不同生态用地空气负离子分布规律研究. 西北林学院学报 31, 280-285.
DOI URL |
[6] | 黄向华, 王健, 曾宏达, 陈光水, 钟羡芳 (2013). 城市空气负离子浓度时空分布及其影响因素综述. 应用生态学报 24, 1761-1768. |
[7] | 李安伯 (1983). 空气离子生物学效应研究的进展. 西安医学院学报 4, 103-108. |
[8] | 李安伯 (2001). 空气离子实验与临床研究新进展. 中华理疗杂志 24(2), 118-119. |
[35] |
张万超, 郑俊鸣, 丁旭玲, 彭东辉, 吴仁烨, 邓传远, 郑金贵 (2016). 3种仙人掌科植物负离子释放量与释放通道的相关性研究. 热带作物学报 37, 1298-1305.
DOI URL |
[36] |
张亚冰, 王秀云, 洪亚平 (2008). 植物叶表皮制片方法改进. 安徽农业科学 36, 12683, 12689.
DOI URL |
[37] |
钟林生, 吴楚材, 肖笃宁 (1998). 森林旅游资源评价中的空气负离子研究. 生态学杂志 17, 56-60.
DOI URL |
[38] |
Griffin JE, Kornblueh IH (1962). Ionization of the air.Int J Biometeorol 6, 29-32.
DOI URL |
[39] | Kondrashove MN, Grigorenko EV, Tikhonov AN, Sirota |
[40] |
TV, Temnov AV, Stavrovskaja IG, Kosyakova NI, Lange NV, Tikhonov VP (2000). The primary physico- chemical mechanism for the beneficial biological/medical effects of negative air ions.IEEE Trans Plasma Sci 28, 230-237.
DOI URL |
[41] |
Kosenko EA, Kaminsky YG, Stavrovskaya IG, Sirota TV, Kondrashova MN (1997). The stimulatory effect of negative air ions and hydrogen peroxide on the activity of superoxide dismutase.FEBS Lett 410, 309-312.
DOI URL PMID |
[42] |
Krueger AP (1962). Air ions and physiological function.J Gen Physiol 45, 233-241.
DOI URL PMID |
[43] |
Krueger AP (1972). Are air ions biologically significant? A review of a controversial subject.Int J Biometeorol 16, 313-322.
DOI URL PMID |
[44] |
Krueger AP (1985). The biological effects of air ions.Int J Biometeorol 29, 205-206.
DOI URL PMID |
[45] |
Krueger AP, Reed EJ (1976). Biological impact of small air ions.Science 193, 1209-1213.
DOI URL PMID |
[46] |
Liang H, Chen XS, Yin JG, Da LJ (2014). The spatial- temporal pattern and influencing factors of negative air ions in urban forests, Shanghai, China.J For Res 25, 847-856.
DOI URL |
[47] |
Nakane H, Asami O, Yamada Y, Ohira H (2002). Effect of negative air ions on computer operation, anxiety and Sali- vary chromogranin A-like immunoreactivity.Int J Psycho- physiol 46, 85-89.
DOI URL PMID |
[48] |
Tikhonov VP, Tsvetkov VD, Litvinova EG, Sirota TV, Kondrashova MN (2002). Generation of negative air ions by wheat seedlings in a high voltage electrization of soil.Biofizika 47, 130-134.
URL PMID |
[49] |
Tikhonov VP, Tsvetkov VD, Litvinova EG, Sirota TV, Kondrashova MN (2004). Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil.Russ J Plant Physiol 51, 414-419.
DOI URL |
[50] |
Wakamura T, Sato M, Sato A, Dohi T, Ozaki K, Asou N, Hagata S, Tokura H (2004). A preliminary study on influence of negative air ions generated from pajamas on core body temperature and salivary IgA during night sleep.Int J Occup Med Environ Health 17, 295-298.
DOI URL PMID |
[51] |
Wang J, Li SH (2009). Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional ch- ange.J Environ Manage 90, 2746-2754.
DOI URL PMID |
[52] |
Wu CF, Lai CH, Chu HJ, Lin WJ (2011). Evaluating and mapping of spatial air ion quality patterns in a residential garden using a geostatistic method.Int J Environ Res Pub- lic Health 8, 2304-2319.
DOI URL PMID |
[1] | Yi Song, Hanghang Chen, Xin Cui, Zhifeng Lu, Shipeng Liao, Yangyang Zhang, Xiaokun Li, Rihuan Cong, Tao Ren, Jianwei Lu. Potassium Nutrient Status-mediated Leaf Growth of Oilseed Rape (Brassica napus) and Its Effect on Phyllosphere Microorganism [J]. Chinese Bulletin of Botany, 2024, 59(1): 54-65. |
[2] | WANG Jia-Yi, WANG Xiang-Ping, XU Cheng-Yang, XIA Xin-Li, XIE Zong-Qiang, FENG Fei, FAN Da-Yong. Response of hydraulic architecture in Fraxinus velutina street trees to the percentage of impervious pavement in Beijing [J]. Chin J Plant Ecol, 2023, 47(7): 998-1009. |
[3] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[4] | Wenqi Zhou, Yuqian Zhou, Yongsheng Li, Haijun He, Yanzhong Yang, Xiaojuan Wang, Xiaorong Lian, Zhongxiang Liu, Zhubing Hu. ZmICE2 Regulates Stomatal Development in Maize [J]. Chinese Bulletin of Botany, 2023, 58(6): 866-881. |
[5] | Zhou Yuping, Yan Jiahao, Tian Chang’en. Research Progress on the Regulatory Mechanisms of ABA Signal Transduction in Guard Cells [J]. Chinese Bulletin of Botany, 2022, 57(5): 684-696. |
[6] | MA Yan-Ze, YANG Xi-Lai, XU Yan-Sen, FENG Zhao-Zhong. Response of key parameters of leaf photosynthetic models to increased ozone concentration in four common trees [J]. Chin J Plant Ecol, 2022, 46(3): 321-329. |
[7] | LUO Dan-Dan, WANG Chuan-Kuan, JIN Ying. Response mechanisms of hydraulic systems of woody plants to drought stress [J]. Chin J Plant Ecol, 2021, 45(9): 925-941. |
[8] | Yigong Zhang, Yi Zhang, Ayibaiheremu Mutailifu, Daoyuan Zhang. Heterologous Overexpression of Desiccation-tolerance Moss ScABI3 Gene Changes Stomatal Phenotype and Improves Drought Resistance in Transgenic Arabidopsis [J]. Chinese Bulletin of Botany, 2021, 56(4): 414-421. |
[9] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[10] | YANG Ke-Tong, CHANG Hai-Long, CHEN Guo-Peng, YU Xiao-Ya, XIAN Jun-Ren. Stomatal traits of main greening plant species in Lanzhou [J]. Chin J Plant Ecol, 2021, 45(2): 187-196. |
[11] | CHEN Sheng-Nan, CHEN Zuo-Si-Nan, ZHANG Zhi-Qiang. Canopy stomatal conductance characteristics of Pinus tabulaeformis and Acer truncatum and their responses to environmental factors in the mountain area of Beijing [J]. Chin J Plant Ecol, 2021, 45(12): 1329-1340. |
[12] | LI Tang-Ji, WANG Mao-Lin, CAO Ying, XU Gang, YANG Qi-Qi, REN Si-Yuan, HU Shang-Lian. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage [J]. Chin J Plant Ecol, 2021, 45(12): 1365-1379. |
[13] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[14] | Yajing Wang,Xinying Zhang,Guirong Huang,Xiaoying Liu,Rui Guo,Fengxue Gu,Xiuli Zhong,Xurong Mei. Characteristics of Phosphatidic Acid and the Underlying Mechanisms of ABA-induced Stomatal Movement in Plants [J]. Chinese Bulletin of Botany, 2019, 54(2): 245-154. |
[15] | WANG Jing-Xu, HUANG Hua-Guo, LIN Qi-Nan, WANG Bing, HUANG Kan. Shoot beetle damage to Pinus yunnanensis monitored by infrared thermal imaging at needle scale [J]. Chin J Plant Ecol, 2019, 43(11): 959-968. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||