Please wait a minute...
IMAGE/TABLE DETAILS
Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field
Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui
Chinese Bulletin of Botany    2017, 52 (6): 744-755.   DOI: 10.11983/CBB16242
Abstract   (1440 HTML22 PDF(pc) (641KB)(2135)  

Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.


Treatment Factors Average of negative air ions concentration (ion·cm-3)
A B C P0 P4 P6 P7
A1B1C1 8 0.5 5 36±3 a 452644±21866 n 91±6 a 8605±983 f
A1B2C3 8 1.0 65 38±2 a 471667±21881 n 92±8 a 9581±948 f
A1B3C4 8 1.5 90 39±2 a 535311±25007 l 94±5 a 8559±874 f
A1B4C2 8 2.0 35 44±2 a 494667±27146 m 98±8 a 8832±543 f
A2B1C4 10 0.5 90 39±2 a 795822±53569 k 95±9 a 20200±1478 f
A2B2C2 10 1.0 35 38±2 a 822267±54244 j 88±8 a 22473±1381 f
A2B3C1 10 1.5 5 37±3 a 813022±50909 jk 85±7 a 23236±2467 f
A2B4C3 10 2.0 65 41±3 a 872734±55664 i 91±4 a 21801±1643 f
A3B1C2 15 0.5 35 105±2 a 1564444±119680 d 226±20 a 181311±20261 e
A3B2C4 15 1.0 90 107±2 a 1628244±191548 c 250±40 a 218444±33270 c
A3B3C3 15 1.5 65 109±3 a 1730800±195344 a 233±16 a 191867±32167 de
A3B4C1 15 2.0 5 107±2 a 1670933±187634 b 262±28 a 208067±34590 cd
A4B1C3 20 0.5 65 130±2 a 1186667±103135 f 170±39 a 301933±30237 b
A4B2C1 20 1.0 5 129±5 a 1264000±117184 e 179±18 a 330356±30322 a
A4B3C2 20 1.5 35 134±3 a 1136800±83461 g 215±33 a 322644±29865 ab
A4B4C4 20 2.0 90 140±4 a 1038133±83109 h 164±51 a 318156±36925 ab
Table 4 Analysis of negative air ions concentration generated by plants upon different combinational parameters of pulsed electrical stimulation (means±SD)
Other Images/Table from this Article