Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field
Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui
Chinese Bulletin of Botany
2017, 52 ( 6):
744-755.
DOI: 10.11983/CBB16242
Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.
Treatment | Factors | Average of negative air ions concentration (ion·cm-3) | A | B | C | | P0 | P4 | P6 | P7 | A1B1C1 | 8 | 0.5 | 5 | 36±3 a | 452644±21866 n | 91±6 a | 8605±983 f | A1B2C3 | 8 | 1.0 | 65 | 38±2 a | 471667±21881 n | 92±8 a | 9581±948 f | A1B3C4 | 8 | 1.5 | 90 | 39±2 a | 535311±25007 l | 94±5 a | 8559±874 f | A1B4C2 | 8 | 2.0 | 35 | 44±2 a | 494667±27146 m | 98±8 a | 8832±543 f | A2B1C4 | 10 | 0.5 | 90 | 39±2 a | 795822±53569 k | 95±9 a | 20200±1478 f | A2B2C2 | 10 | 1.0 | 35 | 38±2 a | 822267±54244 j | 88±8 a | 22473±1381 f | A2B3C1 | 10 | 1.5 | 5 | 37±3 a | 813022±50909 jk | 85±7 a | 23236±2467 f | A2B4C3 | 10 | 2.0 | 65 | 41±3 a | 872734±55664 i | 91±4 a | 21801±1643 f | A3B1C2 | 15 | 0.5 | 35 | 105±2 a | 1564444±119680 d | 226±20 a | 181311±20261 e | A3B2C4 | 15 | 1.0 | 90 | 107±2 a | 1628244±191548 c | 250±40 a | 218444±33270 c | A3B3C3 | 15 | 1.5 | 65 | 109±3 a | 1730800±195344 a | 233±16 a | 191867±32167 de | A3B4C1 | 15 | 2.0 | 5 | 107±2 a | 1670933±187634 b | 262±28 a | 208067±34590 cd | A4B1C3 | 20 | 0.5 | 65 | 130±2 a | 1186667±103135 f | 170±39 a | 301933±30237 b | A4B2C1 | 20 | 1.0 | 5 | 129±5 a | 1264000±117184 e | 179±18 a | 330356±30322 a | A4B3C2 | 20 | 1.5 | 35 | 134±3 a | 1136800±83461 g | 215±33 a | 322644±29865 ab | A4B4C4 | 20 | 2.0 | 90 | 140±4 a | 1038133±83109 h | 164±51 a | 318156±36925 ab |
Table 4
Analysis of negative air ions concentration generated by plants upon different combinational parameters of pulsed electrical stimulation (means±SD)
Extracts from the Article
不同强度的脉冲电场对盆土释放负离子的作用很小(36-140 ion·cm-3), 处理间均无显著差异(表4)。紫背竹芋在不同强度脉冲电场作用下, 释放负离子的能力存在差异, 浓度均值为452 644-1 730 800 ion·cm-3 (表4)。A3B3C3处理下的负离子浓度均值最高, 是常态下释放能力(未刺激)的22 773.7倍。负离子浓度最低的处理为A1B1C1, 浓度均值为452 644 ion·cm-3, 是其常态下释放能力的5 955.8倍。方差分析表明, 紫背竹芋高效释放负离子的最优处理为A3B3C3。在该强度脉冲电场作用下, 其释放负离子能力的倍增效应最为显著。
|