Please wait a minute...
IMAGE/TABLE DETAILS
Relationship Between Negative Air Ion Generation by Plants and Stomatal Characteristics Under Stimulation of Pulsed Electrical Field
Wu Renye, Sun Yuanfen, Zheng Jingui, Deng Chuanyuan, Ye Dapeng, Wang Qingshui
Chinese Bulletin of Botany    2017, 52 (6): 744-755.   DOI: 10.11983/CBB16242
Abstract   (1297 HTML17 PDF(pc) (641KB)(1142)  

Under normal conditions, the capacity of plants to generate negative air ions (NAIs) is very weak. However, stimulation of a pulsed electrical field can result in substantial improvement of the ability for NAI generation. We examined NAI generation in Stromanthe sanguinea, Calathea zebrina, and Hippeastrum rutilum in glass chambers under the natural state and under pulsed electrical field and light stimulation and analyzed the shape of stomata. We found variation in NAI generation by plants due to the different combined parameters of the pulsed electrical field. Each plant has its own optimal pulsed electrical field with a combination of parameters for efficient NAI generation: S. sanguinea with A3B3C3 (A3, U=1.5×104 V; B3, T=1.5 s; C3, τ =65 ms), C. zebrina with A3B4C1 (A3, U=1.5×104 V; B4, T=2.0 s; C1,τ =5 ms) and H. rutilum with A4B4C1 (A4, U=2.0×104 V; B4, T=2.0 s; C1, τ=5 ms). With the application of a pulsed electrical field to plants, the higher the voltage, the greater the capacity for NAI generation. With enhanced light intensity, the ability to generate NAI significantly increased with application of a pulsed electrical field. Without the pulsed electrical field, despite the slightly increased NAI concentration with increasing light intensity, NAI concentration did not differ (P>0.05). Finally, NAI generation was closely related to the characteristics of leaf stomata. Furthermore, a greater degree of stomatal opening and stomatal density was associated with stronger capacity to generate NAI.


Treatment Calathea insignis Calathea zebrina Hippeastrum rutilum
Voltage
(103 V)
NAIC
(ion·cm-3)
Voltage
(103 V)
NAIC
(ion·cm-3)
Voltage
(103 V)
NAIC
(ion·cm-3)
CK 5.13±0.33 a 1757467±218808 a 5.50±0.14 a 260±33 a 4.32±0.11 a 362000±35957 a
A 1.78±0.10 b 2119±88 b 1.44±0.26 b 152±11 a 0.91±0.06 b 706±29 b
B 0.51±0.03 c 89±6 b 0.66±0.04 c 85±6 a 0.50±0.06 c 77±5 b
Table 5 Analysis between voltage of plants and negative air ions concentration (means±SD)
Extracts from the Article
表5显示, 同一植物体上储存的电压与其释放负离子的能力呈正相关。紫背竹芋、绒叶肖竹芋和朱顶红对照组的负离子浓度均值都高于处理A和B组。除绒叶肖竹芋的负离子浓度在3个处理间无显著差异外(P> 0.05), 紫背竹芋和朱顶红在处理A、B两组的浓度值与对照组相比均差异显著(P<0.05)。
表5
3种植物对照组的电压与输入电压(最佳参数组合的脉冲电压)相比都有不同程度的衰减, 其中以朱顶红的电压衰减量最大, 减少了78.4%, 负离子浓度为362 000 ion·cm-3。绒叶肖竹芋和朱顶红分别减少65.8%和63.3%, 负离子浓度分别为1 757 467和260 ion·cm-3。尽管绒叶肖竹芋植物体上的电压为三者中最高, 但其释放负离子的能力却最小。从处理组A的结果可以看出, 3种植物体上的电压衰减量与CK相比存在显著差异(P<0.05); 紫背竹芋植物体电压与输入电压相比减少了88.1%, 负离子浓度比CK减少了99.9%; 绒叶肖竹芋和朱顶红的植物体电压分别减少了90.4%和95.5%, 负离子浓度分别减少41.5%和99.8%。处理B组中, 3种植物的植物体电压进一步衰减, 释放负离子的能力接近自然状态下的水平(表5)。
对3种植物施加最佳脉冲电场作用的研究结果表明, 植物体上的电压值与释放负离子的能力呈正相关, 即植物体所储存的电压越高, 其释放负离子的能力越强。以紫背竹芋为例, 当植物体电压由5.13×103 V降为0.51×103 V时, 其释放负离子的能力接近自然状态下的水平(89 ion·cm-3)。我们认为储存在植物体上的电压相当于施加给植物体的“能量”, 这个能量需达到激发该植物生物学效应具有的“阈值”或“功率窗”, 即该脉冲电压正是打开植物释放负离子通道所必需的“能量”。
Other Images/Table from this Article