Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (4): 503-508.DOI: 10.11983/CBB19087 cstr: 32102.14.CBB19087
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Xinjie Cheng1,Hengxiu Yu1,Zhukuan Cheng2,*()
Received:
2019-05-12
Accepted:
2019-06-14
Online:
2019-07-01
Published:
2019-07-01
Contact:
Zhukuan Cheng
Xinjie Cheng, Hengxiu Yu, Zhukuan Cheng. Protocols for Analyzing Rice Meiotic Chromosomes[J]. Chinese Bulletin of Botany, 2019, 54(4): 503-508.
Figure 1 Characterization of rice meiotic pachytene chromosomes (A) Fluorescent in situ hybridization using rice pachytene chromosomes probed with the telomeric sequence pAtT4 (red); Chromosomes stained with DAPI (blue) (Images taken with a regular fluorescence microscope); (B) Immunodetection of PAIR3 (green) and ZEP1 (red) in rice pachytene chromosomes (Images taken with a super resolution microscope). Bars=5 µm
[1] | Arumuganathan K, Earle ED ( 1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9, 229-241. |
[2] | Che L, Tang D, Wang K, Wang M, Zhu K, Yu H, Gu M, Cheng Z ( 2011). OsAM1 is required for leptotene transition in rice. Cell Res 21, 654-665. |
[3] | Cheng Z, Buell CR, Wing RA, Gu M, Jiang J ( 2001 a). Toward a cytological characterization of the rice genome. Genome Res 11, 2133-2141. |
[4] | Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J ( 2002). Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14, 1691-1704. |
[5] | Cheng Z, Stupar RM, Gu M, Jiang J ( 2001 b). A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma 110, 24-31. |
[6] | Goff SA ( 1999). Rice as a model for cereal genomics. Curr Opin Plant Biol 2, 86-89. |
[7] | Ji JH, Tang D, Shen Y, Xue ZH, Wang HJ, Shi WQ, Zhang C, Du GJ, Li YF, Cheng ZK ( 2016). P31 comet, a member of the synaptonemal complex, participates in meiotic DSB formation in rice . Proc Natl Acad Sci USA 113, 10577-10582. |
[8] | Kurata N, Omura T, Iwata N ( 1981). Studies on centromere, chromomere and nucleolus in pachytene nuclei of rice, Oryza sativa, microsporocytes. Cytologia 46, 791-800. |
[9] | Li X, Chao D, Wu Y, Huang X, Chen K, Cui L, Su L, Ye W, Chen H, Chen H, Dong N, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J, Gao J, Lin H ( 2015). Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47, 827-833. |
[10] | Li YF, Qin BX, Shen Y, Zhang FF, Liu CZ, You HL, Du GJ, Tang D, Cheng ZK ( 2018). HEIP1 regulates crossover formation during meiosis in rice. Proc Natl Acad Sci USA 115, 10810-10815. |
[11] | Luo Q, Li YF, Shen Y, Cheng ZK ( 2014). Ten years of gene discovery for meiotic event control in rice. J Genet Genomics 41, 125-137. |
[12] | Ma Y, Dai X, Xu Y, Luo W, Zheng X, Zeng D, Pan Y, Lin X, Liu H, Zhang D, Xiao J, Guo X, Xu S, Niu Y, Jin J, Zhang H, Xu X, Li L, Wang W, Qian Q, Ge S, Chong K ( 2015). COLD1 confers chilling tolerance in rice. Cell 160, 1209-1221. |
[13] | Miao CB, Tang D, Zhang HG, Wang M, Li YF, Tang SZ, Yu HX, Gu MH, Cheng ZK ( 2013). CENTRAL REGION COMPONENT 1, a novel synaptonemal complex component, is essential for meiotic recombination initiation in rice. Plant Cell 25, 2998-3009. |
[14] | Nonomura K, Morohoshi A, Nakano M, Eiguchi M, Miyao A, Hirochika H, Kurata N ( 2007). A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19, 2583-2594. |
[15] | Pawlowski WP, Golubovskaya IN, Timofejeva L, Meeley RB, Sheridan WF, Cande WZ ( 2004). Coordination of meiotic recombination, pairing, and synapsis by PHS1. Science 303, 89-92. |
[16] | Ren LJ, Tang D, Zhao TT, Zhang FF, Liu CZ, Xue ZH, Shi WQ, Du GJ, Shen Y, Li YF, Cheng ZK ( 2018). OsSPL regulates meiotic fate acquisition in rice. New Phytol 218, 789-803. |
[17] | Tang X, Bao W, Zhang W, Cheng Z ( 2007). Identification of chromosomes from multiple rice genomes using a universal molecular cytogenetic marker system. J Integr Plant Biol 49, 953-960. |
[18] | Wang K, Tang D, Wang M, Lu J, Yu H, Liu J, Qian B, Gong Z, Wang X, Chen J, Gu M, Cheng Z ( 2009). MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice. J Cell Sci 122, 2055-2063. |
[19] | Wang M, Wang K, Tang D, Wei C, Li M, Shen Y, Chi Z, Gu M, Cheng Z ( 2010). The central element protein ZEP1 of the synaptonemal complex regulates the number of crossovers during meiosis in rice. Plant Cell 22, 417-430. |
[20] | Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q ( 2015). Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47, 944-948. |
[21] | Wu HK ( 1967). Note on preparing of pachytene chromosomes by double mordant. Sci Agric 15, 40-44. |
[22] | Yu H, Wang M, Tang D, Wang K, Chen F, Gong Z, Gu M, Cheng Z ( 2010). OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice. Chromosoma 119, 625-636. |
[23] | Zhang F, Tang D, Shen Y, Xue ZH, Shi WQ, Ren LJ, Du GJ, Li Y, Cheng ZK ( 2017). The F-box protein ZYGO1 mediates bouquet formation to promote homologous pairing, synapsis, and recombination in rice meiosis. Plant Cell 29, 2597-2609. |
[24] | Zhao TT, Ren LJ, Chen XJ, Yu HX, Liu CJ, Shen Y, Shi WQ, Tang D, Du GJ, Li YF, Ma BJ, Cheng ZK ( 2018). The OsRR24/LEPTO1 type-B response regulator is essential for the organization of leptotene chromosomes in rice meiosis. Plant Cell 30, 3024-3037. |
[1] | Tai Wang, Fujun Song, Yongsheng Zhang, Zhongyu Lou, Yanping Zhang, Yanyan Du. Fish diversity and resource status in interior drainage systems of Hexi Corridor [J]. Biodiv Sci, 2025, 33(4): 24387-. |
[2] |
Juan Cui, Xiaoyu Yu, Yuejiao Yu, Chengwei Liang, Jian Sun, Wenfu Chen.
Analysis of Texture Factors and Genetic Basis Influencing the Differences in Eating Quality between Northeast China and Japanese Japonica Rice [J]. Chinese Bulletin of Botany, 2025, 60(4): 1-0. |
[3] | Zhao Ling, Guan Ju, Liang Wenhua, Zhang Yong, Lu Kai, Zhao Chunfang, Li Yusheng, Zhang Yadong. Mapping of QTLs for Heat Tolerance at the Seedling Stage in Rice Based on a High-density Bin Map [J]. Chinese Bulletin of Botany, 2025, 60(3): 342-353. |
[4] | Xinyu Li, Yue Gu, Feifei Xu, Jinsong Bao. Research Progress on Post-translational Modifications of Starch Biosynthesis-related Proteins in Rice Endosperm [J]. Chinese Bulletin of Botany, 2025, 60(2): 256-270. |
[5] | Ma Wenjun, Liu Sijia, Li Kemao, Jian Shenglong, Xue Chang’an, Han Qingxiango, Wei Jinliang, Chen Shengxue, Niu Yimeng, Cui Zhouping, Sui Ruichen, Tian Fei, Zhao Kai. Fish diversity and distribution in the source region of the Yangtze River in Qinghai Province [J]. Biodiv Sci, 2025, 33(2): 24494-. |
[6] | Jianguo Li, Yi Zhang, Wenjun Zhang. Iron Plaque Formation and Its Effects on Phosphorus Absorption in Rice Roots [J]. Chinese Bulletin of Botany, 2025, 60(1): 132-143. |
[7] | Zhixian Sun, Chen Tian, Xin Wang, Yutian Fang, Bo Li, Yahui Zhao. Threats faced by native fishes in tropical coastal cities: A case study of Sanya City, Hainan Province, China [J]. Biodiv Sci, 2024, 32(8): 24165-. |
[8] | Xueyuan Li, Zhixian Sun, Fengzhen Wang, Rui Xi, Yutian Fang, Junyuan Hao, Dong Sheng, Shuya Sun, Yahui Zhao. Impacts of urban development on functional diversity in fish: A case study of Beijing, a megacity [J]. Biodiv Sci, 2024, 32(8): 24150-. |
[9] | Jia Xu, Xiaojuan Cui, Yifei Zhang, Chang Wu, Yuandong Sun. Fish diversity and distribution in the Nanling region [J]. Biodiv Sci, 2024, 32(7): 23482-. |
[10] | Zuopeng Zhang, Chenyang Yao, Ling Wu, Zunlan Luo, Guang Sun, Zongyong Guo, Xiaosi Li, Feng Lin, Xiaoyong Chen. Fish diversity and threat factors in the Yunnan section of the Nujiang River [J]. Biodiv Sci, 2024, 32(7): 24076-. |
[11] | Ruifeng Yao, Daoxin Xie. Activation and Termination of Strigolactone Signal Perception in Rice [J]. Chinese Bulletin of Botany, 2024, 59(6): 873-877. |
[12] | Teng Wang, Chunhou Li, Guanghua Wang, Jinfa Zhao, Juan Shi, Hongyu Xie, Yong Liu, Yu Liu. Species composition and succession of coral reef fishes on Qilianyu Island, Xisha Islands [J]. Biodiv Sci, 2024, 32(6): 23481-. |
[13] | Jinjin Lian, Luyao Tang, Yinuo Zhang, Jiaxing Zheng, Chaoyu Zhu, Yuhan Ye, Yuexing Wang, Wennan Shang, Zhenghao Fu, Xinxuan Xu, Richeng Wu, Mei Lu, Changchun Wang, Yuchun Rao. Genetic Locus Mining and Candidate Gene Analysis of Antioxidant Traits in Rice [J]. Chinese Bulletin of Botany, 2024, 59(5): 738-751. |
[14] | Jiahui Huang, Huimin Yang, Xinyu Chen, Chaoyu Zhu, Yanan Jiang, Chengxiang Hu, Jinjin Lian, Tao Lu, Mei Lu, Weilin Zhang, Yuchun Rao. Response Mechanism of Rice Mutant pe-1 to Low Light Stress [J]. Chinese Bulletin of Botany, 2024, 59(4): 574-584. |
[15] | Jianmin Zhou. A Combat Vehicle with a Smart Brake [J]. Chinese Bulletin of Botany, 2024, 59(3): 343-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||