Chinese Bulletin of Botany ›› 2021, Vol. 56 ›› Issue (2): 218-231.DOI: 10.11983/CBB20141
• SPECIAL TOPICS • Previous Articles Next Articles
Songquan Song1,2,*(), Jun Liu2,*(), Hua Yang3, Wenhu Zhang2, Qi Zhang2, Jiadong Gao2
Received:
2020-08-03
Accepted:
2021-01-05
Online:
2021-03-01
Published:
2021-03-17
Contact:
Songquan Song,Jun Liu
Songquan Song, Jun Liu, Hua Yang, Wenhu Zhang, Qi Zhang, Jiadong Gao. Research Progress in Seed Development, Dormancy and Germination Regulated by Cytokinin[J]. Chinese Bulletin of Botany, 2021, 56(2): 218-231.
Figure 1 A model of cytokinin (CK) metabolism and signaling transduction (modified from Kieber and Schaller, 2018; Zubo and Schaller, 2020) Ade: Adenine; ADP: Adenosine diphosphate; AMP: Adenosine monophosphate; ATP: Adenosine triphosphate; CKX: CK oxidase/dehydrogenase; CYP735A: Cytochrome P450 monooxygenase; cZOG: cis-Zeatin-O-glucosyltransferase; DMAPP: Dimethylallyl diphosphate; HK: Histidin (His) kinase; HP: His phosphotransfer protein; IPT: Isopentenyltransferase; LOG: CK nucleoside 5′-monophosphate phosphoribohydrolase; SC: Sidechain; Type-B RRs: Type-B response regulators; Type-A RRs: Type-A response regulators; UGT: UDP glycosyltransferase
Figure 2 Intermolecular interactions in the cytokinin signaling pathway (modified from Lomin et al. 2018; Arkhipov et al. 2019) Cytokinin signaling is perceived by membrane-localized Histidine (His) kinase receptors and is transduced to nucleus through a His phosphotransfer protein to activate a family of transcription factors in the nucleus. CK: Cytokinin; ATP: Adenosine triphosphate; ADP: Adenosine diphosphate; P: Phosphate; D: Conserved Aspartate; H: Conserved His; DI: Dimerization interface domain of the sensor module; PAS and PAS-like: Subdomains of the CHASE domain of the sensor module; TM1 and TM2: Transmembrane domain 1 and 2; HisKA (DHpD): His kinase A domain (dimerization and His phosphotransfer domain); H-ATPase (CAD): Adenosine triphosphatase domain (catalytic and ATP-binding domain); REC-like: Receiver-like domain; REC: Receiver domain; HPt: His-containing phosphotransfer protein (phosphotransmitter); RR-B: Type B response regulator (transcription factor). Protein-protein interactions (PPI) are indicated by a red dotted line.
Figure 3 The model of the change of proteins (enzymes) involved in cytokinin (CK) metabolism and signaling components during seed development and germination (modified from Jameson et al. 2016; Tuan et al. 2019; Nguyen et al. 2020) IPT: Isopentenyltransferase; LOG: CK nucleoside 5′-monophosphate phosphoribohydrolase; CKX: CK oxidase/ dehydrogenase; HK: Histidin (His) kinase; HP: His phosphotransfer protein; Type-B RRs: Type-B response regulators; Type-A RRs: Type-A response regulators
[1] | 邓志军, 宋松泉 (2008). ABA对黑黄檀种子萌发的抑制作用以及其他植物激素对ABA的拮抗作用. 云南植物研究 30,440-446. |
[2] | 邓志军, 宋松泉, 艾训儒, 姚兰 (2019). 植物种子保存和检测的原理与技术. 北京: 科学出版社. pp.22-74. |
[3] | 宋松泉, 刘军, 黄荟, 伍贤进, 徐恒恒, 张琪, 李秀梅, 梁娟 (2020a). 赤霉素代谢与信号转导及其调控种子萌发与休眠的分子机制. 中国科学: 生命科学 50,599-615. |
[4] | 宋松泉, 刘军, 徐恒恒, 刘旭, 黄荟 (2020b). 脱落酸代谢与信号传递及其调控种子休眠与萌发的分子机制. 中国农业科学 53,857-873. |
[5] |
徐恒恒, 黎妮, 刘树君, 王伟青, 王伟平, 张红, 程红焱, 宋松泉 (2014). 种子萌发及其调控的研究进展. 作物学报 40,1141-1156.
DOI URL |
[6] |
Araújo S, Pagano A, Dondi D, Lazzaroni S, Pinela E, Macovei A, Balestrazzi A (2019). Metabolic signatures of germination triggered by kinetin in Medicago truncatula. Sci Rep 9, 10466.
DOI URL |
[7] |
Arkhipov DV, Lomin SN, Myakushina YA, Savelieva EM, Osolodkin DI, Romanov GA (2019). Modeling of protein-protein interactions in cytokinin signal transduction. Int J Mol Sci 20,2096.
DOI URL |
[8] | Baskin CC, Baskin JM (2014). Seeds:Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd edn. Amsterdam: Academic Press. pp.5-77. |
[9] |
Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Harada CM, Munoz MD, Le BH, Drews GN, Brady SM, Goldberg RB, Harada JJ (2013). Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA 110,E435- E444.
DOI URL |
[10] | Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013). Physiology of Development,Germination and Dormancy, 3rd edn. New York: Springer. pp.27-83. |
[11] |
Cairns JRK, Esen A (2010). β-glucosidases. Cell Mol Life Sci 67,3389-3405.
DOI URL |
[12] |
Chen L, Zhao JQ, Song JC, Jameson PE (2020). Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol J 18,614-630.
DOI PMID |
[13] |
Chitnis VR, Gao F, Yao Z, Jordan MC, Park S, Ayele BT (2014). After-ripening induced transcriptional changes of hormonal genes in wheat seeds: the cases of brassinosteroids, ethylene, cytokinin and salicylic acid. PLoS One 9,e87543.
DOI URL |
[14] | Corbineau F, Xia Q, Bailly C, EI-Maarouf-Bouteau H (2014). Ethylene, a key factor in the regulation of seed dormancy. Front Plant Sci 5,539. |
[15] |
Day RC, Herridge RP, Ambrose BA, Macknight RC (2008). Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148,1964-1984.
DOI URL |
[16] |
Deng Y, Dong HL, Mu JY, Ren B, Zheng BL, Ji ZD, Yang WC, Liang Y, Zuo JR (2010). Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. Plant Cell 22,1232-1248.
DOI URL |
[17] | Eastwood D, Tavener RJA, Laidman DL (1969). Sequential action of cytokinin and gibberellic acid in wheat aleurone tissue. Nature 221,1267. |
[18] |
Feng J, Wang C, Chen QG, Chen H, Ren B, Li XM, Zuo JR (2013). S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat Commun 4,1529.
DOI URL |
[19] |
Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011). Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62,2431-2452.
DOI URL |
[20] |
Guan CM, Wang XC, Feng J, Hong SL, Liang Y, Ren B, Zuo JR (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE 5 protein in Arabidopsis. Plant Physiol 164, 1515-1526.
DOI URL |
[21] |
Hallmark HT, Rashotte AM (2019). Review—cytokinin response factors: responding to more than cytokinin. Plant Sci 289,110251.
DOI URL |
[22] |
Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59,75-83.
DOI URL |
[23] |
Hošek P, Hoyerová K, Kiran NS, Dobrev PI, Zahajská L, Filepová R, Motyka V, Müller K, Kamínek M (2020). Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol 225,2423-2438.
DOI URL |
[24] |
Hothorn M, Dabi T, Chory J (2011). Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4. Nat Chem Biol 7,766-768.
DOI URL |
[25] |
Hou BK, Lim EK, Higgins GS, Bowles DJ (2004). N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279,47822-47832.
DOI URL |
[26] |
Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006). The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18,3073-3087.
PMID |
[27] | Hwang I, Sheen J, Müller B (2012). Cytokinin signaling networks. Annu Rev Plant Biol 63,353-380. |
[28] |
Jameson PE, Dhandapani P, Novak O, Song JC (2016). Cytokinins and expression of SWEET, SUT, CWINV and AAP genes increase as pea seeds germinate. Int J Mol Sci 17,2013.
DOI URL |
[29] |
Jameson PE, Song JC (2016). Cytokinin: a key driver of seed yield. J Exp Bot 67,593-606.
DOI URL |
[30] |
Kakimoto T (2001). Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol 42,677-685.
PMID |
[31] |
Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004). Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279,14049-14054.
DOI URL |
[32] |
Keshishian EA, Rashotte AM (2015). Plant cytokinin signaling. Essays Biochem 58,13-27.
DOI URL |
[33] |
Khan AA (1968). Inhibition of gibberellic acid-induced germination by abscisic acid and reversal by cytokinins. Plant Physiol 43,1463-1465.
PMID |
[34] |
Kieber JJ, Schaller GE (2014). Cytokinins. Arabidopsis Book 12,e0168.
DOI URL |
[35] |
Kieber JJ, Schaller GE (2018). Cytokinin signaling in plant development. Development 145,dev149344.
DOI URL |
[36] |
Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007). Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445,652-655.
DOI URL |
[37] |
Li YJ, Cheng HY, Song SQ (2009). Effects of temperature, after-ripening, stratification, and scarification plus hormone treatments on dormancy release and germination of Acer truncatum seeds. Seed Sci Technol 37,554-562.
DOI URL |
[38] |
Liu HX, Stone SL (2010). Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22,2630-2641.
DOI URL |
[39] |
Liu XD, Zhang H, Zhao Y, Feng ZY, Li Q, Yang HQ, Luan S, Li JM, He ZH (2013). Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proc Natl Acad Sci USA 110,15485-15490.
DOI URL |
[40] |
Liu ZN, Yuan L, Song XY, Yu XL, Sundaresan V (2017). AHP2, AHP3, and AHP5 act downstream of CKI1 in Arabidopsis female gametophyte development. J Exp Bot 68,3365-3373.
DOI URL |
[41] |
Lomin SN, Krivosheev DM, Steklov MY, Arkhipov DV, Osolodkin DI, Schmülling T, Romanov GA (2015). Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J Exp Bot 66,1851-1863.
DOI URL |
[42] |
Lomin SN, Myakushina YA, Kolachevskaya OO, Getman IA, Arkhipov DV, Savelieva EM, Osolodkin DI, Romanov GA (2018). Cytokinin perception in potato: new features of canonical players. J Exp Bot 69,3839-3853.
DOI URL |
[43] |
Lur HS, Setter TL (1993). Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiol 103,273- 280.
DOI URL |
[44] |
Mähönen AP, Higuchi M, Tormakangas K, Miyawaki K, Pischke MS, Sussman MR, Helariutta Y, Kakimoto T (2006). Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol 16, 1116-1122.
PMID |
[45] |
Marín-de la Rosa N, Pfeiffer A, Hill K, Locascio A, Bhalerao RP, Miskolczi P, Gronlund AL, Wanchoo- Kohli A, Thomas SG, Bennett MJ, Lohmann JU, Blázquez MA, Alabadí D (2015). Genome wide binding site analysis reveals transcriptional coactivation of cytokinin- responsive genes by DELLA proteins. PLoS Genet 11,e1005337.
DOI URL |
[46] | Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004). Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37,128-138. |
[47] | Mok MC, Martin RC, Dobrev PI, Vanková R, Ho PS, Yonekura-Sakakibara K, Sakakibara H, Mok DWS (2005). Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 137,1057-1066. |
[48] | Müller B, Sheen J (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453,1094-1097. |
[49] | Nguyen HN, Perry L, Kisiala A, Olechowski H, Emery RJN (2020). Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat ( Triticum aestivum L.). Planta 252,76. |
[50] | Nonogaki H (2014). Seed dormancy and germination- emerging mechanisms and new hypotheses. Front Plant Sci 5,233. |
[51] | Nonogaki H (2017). Seed biology updates—highlights and new discoveries in seed dormancy and germination research. Front Plant Sci 8,524. |
[52] | Nonogaki H (2019). Seed germination and dormancy: the classic story, new puzzles, and evolution. J Integr Plant Biol 61,541-563. |
[53] | Pekárová B, Szmitkowska A, Dopitová R, Degtjarik O, Žídek L, Hejátko J (2016). Structural aspects of multistep phosphorelay-mediated signaling in plants. Mol Plant 9,71-85. |
[54] | Pekarova B, Szmitkowska A, Houser J, Wimmerova M, Hejátko J (2018). Cytokinin and ethylene signaling. In: Hejátko J, Hakoshima T, eds. Plant Structural Biology:Hormonal Regulations. Cham: Springer. pp.165-200. |
[55] | Ren B, Liang Y, Deng Y, Chen QG, Zhang J, Yang XH, Zuo JR (2009). Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling. Cell Res 19, 1178- 1190. |
[56] | Rijavec T, Dermastia M (2010). Cytokinins and their function in developing seeds. Acta Chim Slov 57,617-629. |
[57] | Romanov GA, Lomin SN, Schmülling T (2018). Cytokinin signaling: from the ER or from the PM? That is the question! New Phytol 218,41-53. |
[58] | Sakakibara H (2006). Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57,431-449. |
[59] | Sakakibara H, Kasahara H, Ueda N, Kojima M, Takei K, Hishiyama S, Asami T, Okada K, Kamiya Y, Yamaya T, Yamaguchi S (2005). Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci USA 102,9972-9977. |
[60] | Sakano Y, Okada Y, Matsunaga A, Suwama T, Kaneko T, Ito K, Noguchi H, Abe I (2004). Molecular cloning, expression, and characterization of adenylate isopentenyltransferase from hop ( Humulus lupulus L.). Phytochemistry 65,2439-2446. |
[61] | Schaller GE, Doi K, Hwang I, Kieber JJ, Khurana JP, Kurata N, Mizuno T, Pareek A, Shiu SH, Wu P, Yip WK (2007). Nomenclature for two-component signaling elements of rice. Plant Physiol 143,555-557. |
[62] | Shu K, Liu XD, Xie Q, He ZH (2016). Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9,34-45. |
[63] | Shuai HW, Meng YJ, Luo XF, Chen F, Zhou WG, Dai YJ, Qi Y, Du JB, Yang F, Liu J, Yang WY, Shu K (2017). Exogenous auxin represses soybean seed germination through decreasing the gibberellin/abscisic acid (GA/ABA) ratio. Sci Rep 7,12620. |
[64] | Spíchal L, Rakova NY, Riefler M, Mizuno T, Romanov GA, Strnad M, Schmülling T (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol 45,1299-1305. |
[65] | Steklov MY, Lomin SN, Osolodkin DI, Romanov GA (2013). Structural basis for cytokinin receptor signaling: an evolutionary approach. Plant Cell Rep 32,781-793. |
[66] | Strnad M (1997). The aromatic cytokinins. Physiol Plant 101,674-688. |
[67] | Takei K, Sakakibara H, Sugiyama T (2001). Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276,26405-26410. |
[68] | Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A (2007). ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol 48,263-277. |
[69] | Tarkowska D, Doležal K, Tarkowski P, Åstot C, Holub J, Fuksová K, Schmülling T, Sandberg G, Strnad M (2003). Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus × canadensis leaves by LC- (+) ESI-MS and capillary liquid chromatography/frit- fast atom bombardment mass spectrometry. Physiol Plant 117,579-590. |
[70] | To JPC, Deruère J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007). Cytokinin regulates type-A Arabidopsis response regulator activity and protein stability via two-component phosphorelay. Plant Cell 19,3901-3914. |
[71] | Tuan PA, Yamasaki Y, Kanno Y, Seo M, Ayele BT (2019). Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Sci Rep 9,3983. |
[72] | Wang YP, Li L, Ye TT, Zhao SJ, Liu Z, Feng YQ, Wu Y (2011). Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J 68,249-261. |
[73] | Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmülling T (2011). The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156,1808-1818. |
[74] | Wybouw B, De Rybel B (2019). Cytokinin—a developing story. Trends Plant Sci 24,177-185. |
[75] | Zalabák D, Galuszka P, Mrízová K, Podlešáková K, Gu RL, Frébortová J (2014). Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol Biochem 74,283-293. |
[76] | Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J (2015). Illuminating light, cytokinin, and ethylene signaling crosstalk in plant development. J Exp Bot 66,4913-4931. |
[77] | Zschiedrich CP, Keidel V, Szurmant H (2016). Molecular mechanisms of two-component signal transduction. J Mol Biol 428,3752-3775. |
[78] | Zubko E, Adams CJ, Macháèková I, Malbeck J, Scollan C, Meyer P (2002). Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29,797-808. |
[79] | Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco-Zorrilla JM, Zhang WJ, Hill K, Raines T, Solano R, Kieber JJ, Loraine AE, Schaller GE (2017). Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci USA 114,E5995-E6004. |
[80] | Zubo YO, Schaller GE (2020). Role of the cytokinin-activated type-B response regulators in hormone crosstalk. Plants 9,166. |
[1] | Lumei He, Bojun Ma, Xifeng Chen. Advances on the Executor Resistance Genes in Plants [J]. Chinese Bulletin of Botany, 2024, 59(4): 0-0. |
[2] | Xiao Liu, Wanying Du, Yunxiu Zhang, Chengming Tang, Huawei Li, Haiyong Xia, Shoujin Fan, Ling’an Kong. Nitrate-dependent Alleviation of Root Ammonium Toxicity in Wheat (Triticum aestivum) [J]. Chinese Bulletin of Botany, 2024, 59(3): 397-413. |
[3] | Miaomiao Sun, Wei Zhang, Linxia Zhang, Juntao Huo, Zhineng Li, Guofeng Liu. Inheritance Analysis of Flower Size and Expression of Related Genes in Petunia hybrida [J]. Chinese Bulletin of Botany, 2024, 59(3): 422-432. |
[4] | Jiahang Che, Weinan Li, Yingzhi Qin, Jinhuan Chen. Research Progress of Leaf Color Variation Mechanism in Woody Plants [J]. Chinese Bulletin of Botany, 2024, 59(2): 319-328. |
[5] | Bao Zhu, Jiangzhe Zhao, Kewei Zhang, Peng Huang. OsCKX9 is Involved in Regulating the Rice Lamina Joint Development and Leaf Angle [J]. Chinese Bulletin of Botany, 2024, 59(1): 10-21. |
[6] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[7] | Huang Huimei, Gao Yongkang, Tai Yuying, Liu Chao, Qu Dejie, Tang Ruiheng, Wang Youning. Research Advances in Elucidating the Function and Molecular Mechanism of the Nitrate Transporter 2 (NRT2) Proteins in Plants [J]. Chinese Bulletin of Botany, 2023, 58(5): 783-798. |
[8] | Haitao Hu, Longbiao Guo. Progress in the Research on Riboflavin Biosynthesis and Function in Plants [J]. Chinese Bulletin of Botany, 2023, 58(4): 638-655. |
[9] | LIU Jian-Xin, LIU Rui-Rui, LIU Xiu-Li, JIA Hai-Yan, BU Ting, LI Na. Regulation of exogenous hydrogen sulfide on photosynthetic carbon metabolism in Avena nude under saline-alkaline stress [J]. Chin J Plant Ecol, 2023, 47(3): 374-388. |
[10] | Shaofan Luo, Kai Jiang, Weichang Huang. Advances in the convergent evolution of phenotypes and diversification of developmental mechanisms of floral spurs [J]. Biodiv Sci, 2023, 31(11): 23249-. |
[11] | Li Cong, Qi Lijuan, Gu Xiaofeng, Li Jigang. Research Progress on TZP, a Novel Key Regulator of Light Signal Transduction in Plants [J]. Chinese Bulletin of Botany, 2022, 57(5): 579-587. |
[12] | Lixia Jia, Yanhua Qi. Advances in the Regulation of Rice (Oryza sativa) Grain Shape by Auxin Metabolism, Transport and Signal Transduction [J]. Chinese Bulletin of Botany, 2022, 57(3): 263-275. |
[13] | Tiantian Zhi, Zhou Zhou, Chengyun Han, Chunmei Ren. PAD4 Mutation Accelerating Programmed Cell Death in Arabidopsis thaliana Tyrosine Degradation Deficient Mutant sscd1 [J]. Chinese Bulletin of Botany, 2022, 57(3): 288-298. |
[14] | Luyao Wang, Jian Chen, Shouqing Zhao, Huili Yan, Wenxiu Xu, Ruoxi Liu, Mi Ma, Yijun Yu, Zhenyan He. Research Progress of the Physiological and Molecular Mechanisms of Cadmium Accumulation in Rice [J]. Chinese Bulletin of Botany, 2022, 57(2): 236-249. |
[15] | Jianwu Wang, Wenjuan Wang, Weiwei Xiang, Huiping Dai, Haiqing Wang, Xiangxiang Qu, Furen Kang. Effects of Overexpression of MtVP1 on Potato Phenotypes and Sugar Metabolism [J]. Chinese Bulletin of Botany, 2022, 57(2): 197-208. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||