Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (4): 515-521.DOI: 10.11983/CBB18257 cstr: 32102.14.CBB18257
• TECHNIQUES AND METHODS • Previous Articles Next Articles
Yue Xu1,Yingping Cao2,Yu Wang2,Chunxiang Fu2,*(),Shaojun Dai1,3,*(
)
Received:
2018-11-30
Accepted:
2019-04-08
Online:
2019-07-01
Published:
2020-01-08
Contact:
Chunxiang Fu,Shaojun Dai
Yue Xu,Yingping Cao,Yu Wang,Chunxiang Fu,Shaojun Dai. Agrobacterium rhizogenes-mediated Transformation System of Spinacia oleracea[J]. Chinese Bulletin of Botany, 2019, 54(4): 515-521.
Figure 3 The induction and morphological characteristics of spinach hairy roots (A) After Agrobacterium rhizogenes LBA9402 infection, multiple hairy roots were produced at one site; (B) The induction of hairy roots around the vascular bundle of the petiole; (C) The induction of hairy roots in veins; (D) The induction of hairy roots around the vascular bundle of stem; (E) Genomic PCR analysis of rolB (up) and virG (down) genes in hairy roots (Lane 1: 2 kb DNA marker; Lane 2-11: Different hairy roots plantlets; Lane 12: LBA9402; Lane 13: Untransformed roots; Lane 14: Mili Q water); (F) The hairy root induced by LBA9402; (G) The wild type root. (A)-(D), (F), (G) Bars=20 μm
Figure 4 The morphological characterization of spinach hairy roots grown on solid medium and in liquid medium (A) Hairy roots grown on solid medium in 0 day after inoculation; (B), (F) Hairy roots grown on solid medium in 14 days after inoculation; (C) Hairy roots grown in liquid medium in 0 day after inoculation; (D), (G) Hairy roots grown in liquid medium in 14 days after inoculation; (E) Increase times of spinach hairy roots fresh weight on solid medium and in liquid medium, respectively. (A)-(D) Bars=8 cm; (F), (G) Bars=20 μm
Figure 5 Regeneration system of spinach hairy roots (A) Calli produced from hairy roots on callus induction medium; (B) Calli induced from hairy roots and produced adventitious buds on the regeneration medium; (C) The plantlets regenerated from the calli produced from hairy roots; (D) The wild type plantlets; (E) Genomic PCR analysis of rolB (up) and virG (down) genes in the plantlets regenerated from the calli produced from hairy roots (Lane 1: 2 kb DNA marker; Lane 2-4: Different hairy roots plantlets regenerated from the calli produced; Lane 5: LBA9402; Lane 6: The wild type plantlets; Lane 7: Mili Q water). (A)-(D) Bars=4 cm
Figure 6 PCR analysis and GFP green fluorescence assay of the rolB gene and GFP gene in spinach transgenic hairy roots (A) Transgenic hairy root under the natural light; (B) Transgenic hairy root under the blue exciting light; (C) Genomic PCR analysis of rolB (up) and virG (middle) and GFP (down) genes in transgenic hairy roots (Lane 1: 2 kb DNA marker; Lane 2-11: Different of transgenic hairy roots lines; Lane 12: LBA9402 (GFP); Lane 13: The wild type root; Lane 14: Milli Q water). (A), (B) Bars=20 μm
[1] | 付春祥 ( 2006). 雪莲细胞培养物中黄酮类物质代谢调控及其生物活性成分分析. 博士论文. 北京: 中国科学院植物研究所. pp. 28-45. |
[2] | 付春祥, 金治平, 杨睿, 吴风燕, 赵德修 ( 2004). 新疆雪莲毛状根的诱导及其植株再生体系的建立. 生物工程学报 20, 366-371. |
[3] | 耿晓霞 ( 2009). 菠菜叶绿体表达载体构建及遗传转化. 硕士论文. 济南: 山东大学. pp. 57-59. |
[4] | 胡凤, 杨万年 ( 2013). 大豆组培苗水培生根与培养基生根比较研究. 大豆科学 32, 333-335. |
[5] | 晋四清 ( 2013). 菠菜露地越冬杂交制种技术. 乡村科技 ( 10), 20. |
[6] | 钱伟, 张合龙, 刘伟, 徐兆生 ( 2014). 菠菜遗传育种研究进展. 中国蔬菜 1(3), 5-13. |
[7] | 任如意, 薛巨坤, 国会艳, 魏继承 ( 2017). 北玄参毛状根诱导及其植株再生. 植物学报 52, 783-787. |
[8] | 施和平, 王蓓, 杨树楠, 郭亚鹏 ( 2016). 五寸石竹毛状根诱导及其植株再生. 植物学报 51, 363-368. |
[9] | 孙晶, 徐洁森, 赵立子, 魏建和, 杨洪一, 隋春 ( 2013). 北柴胡毛状根诱导及其植株再生体系的建立. 药学学报 48, 1491-1497. |
[10] | 孙敏, 汪洪, 王颖, 伍春莲 ( 2002). 长春花转化毛状根诱导及培养条件的优化. 西南师范大学学报(自然科学版) 27, 549-552. |
[11] | 王晓武, 杜永臣 ( 2007). 蔬菜作物分子育种研究现状与趋势. 中国农业科技导报 9(2), 14-18. |
[12] | 闻玉莉, 杨世海 ( 2010). 罗勒毛状根的诱导及培养. 安徽农业科学 38, 1727-1730. |
[13] | Akhgari A, Yrjönen T, Laakso I, Vuorela H, Oksman- Caldentey KM, Rischer H ( 2015). Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production. Plant Cell Rep 34, 1939-1952. |
[14] | Hu Z, Du M ( 2006). Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48, 121-127. |
[15] | Porter JR, Flores H ( 1991). Host range and implication of plant infection by Agrobacterium rhizogenes. CRC Crit Rev Plant Sci 10, 387-421. |
[16] | Ron M, Kajala K, Pauluzzi G ( 2014). Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166, 455-469. |
[17] | Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Razavi K, Ntui VO ( 2013). A reliable and efficient protocol for inducing hairy roots in Papaver bracteatum. Plant Cell Tissue Organ Cult 113, 1-9. |
[18] | Veena V, Taylor GG ( 2007). Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43, 384-403. |
[19] | Xu C, Jiao C, Sun H, Cai X, Wang X, Ge C, Zheng Y, Liu W, Sun X, Xu Y, Deng J, Zhang Z, Huang S, Dai S, Mou B, Wang Q, Fei Z, Wang Q ( 2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat Commun 8, 15275. |
[20] | Zhang HX, Zeevaart JAD ( 1999). An efficient Agrobacterium tumefaciens-mediated transformation and regeneration system for cotyledons of spinach( Spinacia oleracea L.). Plant Cell Rep 18, 640-645. |
[21] | Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X, Wang Q, She Y, Chen S ( 2018). Proteomics and phosphoproteomics of heat stress-responsive mechanisms in spinach. Front Plant Sci 9, 800. |
[1] | Zeng Wendan, Yan Huabing, Wu Zhengdan, Shang Xiaohong, Cao Sheng, Lu Liuying, Xiao Liang, Shi Pingli, Cheng Dong, Long Ziyuan, Li Jieyu. Agrobacterium rhizogenes-mediated Transformation System of Pueraria lobata Hairy Roots [J]. Chinese Bulletin of Botany, 2025, 60(3): 425-434. |
[2] | Jiaxin Chen, Hao Mei, Caixiang Huang, Zongyuan Liang, Yitong Quan, Dongpeng Li, Buweimaieryemu·Saimaiti , Xinxin Li, Hong Liao. A Highly Efficient Method to Generate Chimeric Soybean Plant with Transgenic Hairy Roots [J]. Chinese Bulletin of Botany, 2024, 59(1): 89-98. |
[3] | Ren Ruyi, Xue Jukun, Guo Huiyan, Wei Jicheng. Induction of Hairy Roots of Scrophularia buergeriana and Its Plant Regeneration [J]. Chinese Bulletin of Botany, 2017, 52(6): 783-787. |
[4] | Dapeng Wang, Jiaze Tang, Mingcheng Shao, Wenbiao Zhang, Huafang Wang. Rooting Induced on in vitro Leaves and Fresh Cuttings of Populus euphratica [J]. Chinese Bulletin of Botany, 2017, 52(2): 210-217. |
[5] | Da-Yong FAN, Zeng-Juan FU, Zong-Qiang XIE, Rong-Gui LI, Shu-Min ZHANG. A new technology of modulated Chl a fluorescence image: In vivo measurement of the PSII maximum photochemical efficiency and its heterogeneity within leaves [J]. Chin J Plant Ecol, 2016, 40(9): 942-951. |
[6] | Xizi Shi, Yapeng Guo, Heping Shi. Effect of Paclobutrazol on Growth and Production of Esculentoside A in Hairy Roots of Phytolacca americana [J]. Chinese Bulletin of Botany, 2016, 51(6): 801-806. |
[7] | Heping Shi, Bei Wang, Shunan Yang, Yapeng Guo. Induction of Hairy Roots of Dianthus chinensis and Its Plant Regeneration [J]. Chinese Bulletin of Botany, 2016, 51(3): 363-368. |
[8] | Lili Liu, Shubo Lu, Jiaping Xu, Qingtian Zhang, Changyu Li. Establishment of Plant Regeneration System from Hairy Roots of Aconitum coreanum [J]. Chinese Bulletin of Botany, 2015, 50(5): 623-627. |
[9] | Yingjuan Wang;Huaiyu Bu;Duowei Li;Jingfeng Jia. Preliminary Study of the Induction of Transformed Hairy Roots and Solenesol Content in Nicotiana tabacum [J]. Chinese Bulletin of Botany, 2006, 23(4): 334-340. |
[10] | MU Ping-Li CUI Hong LIU Hai-Jiao ZHAO Bai-Dong. Effects of Various Factors on the Growth and Nicotine Production of Hairy Roots of Nicotiana tabacum in Suspension Culture [J]. Chinese Bulletin of Botany, 2005, 22(05): 590-593. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||