Chinese Bulletin of Botany ›› 2019, Vol. 54 ›› Issue (2): 277-283.DOI: 10.11983/CBB18197 cstr: 32102.14.CBB18197
Special Issue: 逆境生物学专辑 (2019年54卷2期)
• SPECIAL TOPICS • Previous Articles
Wenlan Ye,Guolan Ma,liyanan Yuan,Shiyi Zheng,Linqiao Cheng,Yuan Fang(),Yuchun Rao(
)
Received:
2018-09-17
Accepted:
2018-12-10
Online:
2019-03-01
Published:
2019-09-01
Contact:
Yuan Fang,Yuchun Rao
Wenlan Ye,Guolan Ma,liyanan Yuan,Shiyi Zheng,Linqiao Cheng,Yuan Fang,Yuchun Rao. Research Progress on Pathogenic Characteristics and Resistance of Bacterial Panicle Blight of Rice[J]. Chinese Bulletin of Botany, 2019, 54(2): 277-283.
[1] | 李春宏, 付三雄, 戚存扣 ( 2014). 应用基因芯片分析甘蓝型油菜柱头特异表达基因. 植物学报 49, 246-253. |
[2] | 李路, 刘连盟, 王国荣, 汪爱娟, 王玲, 孙磊, 黎起秦, 黄世文 ( 2015). 水稻穗腐病和穗枯病的研究进展. 中国水稻科学 29, 215-222. |
[3] | 李路, 徐以华, 梁梦琦, 王玲, 刘连盟, 侯雨萱, 黎起秦, 黄世文 ( 2017). 水稻对穗枯病的抗病机理初步研究. 中国水稻科学 31, 551-558. |
[4] | 龙海, 李芳荣, 冯建军, 李一农 ( 2015). 水稻细菌性谷枯病研究进展. 中国植保导刊 35(7), 73-78. |
[5] | 罗金燕 ( 2007). 水稻细菌性谷枯病菌的风险分析、鉴定检测及其拮抗细菌的研究. 博士论文. 杭州: 浙江大学. pp. 2-85. |
[6] | 罗金燕, 谢关林, 李斌 ( 2003). 水稻细菌性谷枯病的生物学特征及其检疫意义. 植物检疫 17, 243-245. |
[7] | 罗金燕, 徐福寿, 王平, 徐丽慧, 谢关林 ( 2008). 水稻细菌性谷枯病病原菌的分离鉴定. 中国水稻科学 22, 82-86. |
[8] | 谢关林, 罗金燕, 李斌 ( 2003). 水稻危险性病害——细菌性谷枯病及其病原鉴别. 植物保护 29(5), 47-49. |
[9] | 徐丽慧 ( 2008). 水稻细菌性谷枯病菌的分子检测及细菌性褐条病病原鉴定研究. 硕士论文. 杭州: 浙江大学. pp. 3. |
[10] | 朱金国, 莫瑾, 朱水芳, 赵文军, 彭梓, 刘红霞, 钟文英 ( 2010). 利用双重PCR-DHPLC技术检测水稻细菌性谷枯病菌的研究. 植物病理学报 40, 449-455. |
[11] | Boekema BKL, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J ( 2007). Hexa- decane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 73, 3838-3844. |
[12] | Chun H, Choi O, Goo E, Kim N, Kim H, Kang Y, Kim J, Moon JS, Hwang I ( 2009). The quorum sensing dependent gene katG of Burkholderia glumae is important for protection from visible light. J Bacteriol 191, 4152-4157. |
[13] | Cui ZQ, Zhu B, Xie GL, Li B, Huang SW ( 2016). Research status and prospect of Burkholderia glumae , the pathogen causing bacterial panicle blight. Rice Sci 23, 111-118. |
[14] |
Daniels R, Vanderleyden J, Michiels J ( 2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28, 261-289.
DOI URL |
[15] |
Davey ME, O’Toole GA ( 2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol 64, 847-867.
DOI URL |
[16] | Devescovi G, Bigirimana J, Degrassi G, Cabrio L, LiPuma JJ, Kim J, Hwang I, Venturi V ( 2007). Involvement of a quorum-sensing-regulated lipase secreted by a clinical isolate of Burkholderia glumae in severe disease symptoms in rice. Appl Environ Microbiol 73, 4950-4958. |
[17] | Francis F, Kim J, Ramaraj T, Farmer A, Rush MC, Ham JH ( 2013). Comparative genomic analysis of two Burkholderia glumae strains from different geographic origins reveals a high degree of plasticity in genome structure associated with genomic islands. Mol Genet Genomics 288, 195-203. |
[18] | Frenken LGJ, Bos JW, Visser C, Müller W, Tommassen J, Verrips CT ( 1993). An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase. Mol Microbiol 9, 579-589. |
[19] | Goto K, Ohata K ( 1956). New bacterial diseases of rice (brown stripe and grain rot). Ann Phytopathol Soc Jpn 21, 46-47. |
[20] | Ham JH, Melanson RA, Rush MC ( 2011). Burkholderia glumae: next major pathogen of rice? Mol Plant Pathol 12, 329-339. |
[21] | Hikichi Y, Noda C, Shimizu K ( 1989). Oxolic acid. Jpn Pestic Infect 55, 21-23. |
[22] | Jang MS, Goo E, An JH, Kim J, Hwang I ( 2014). Quorum sensing controls flagellar morphogenesis in Burkholderia glumae . PLoS One 9, e84831. |
[23] | Jeong Y, Kim J, Kim S, Kang Y, Nagamatsu T, Hwang I ( 2003). Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis 87, 890-895. |
[24] |
Kang Y, Kim J, Kim S, Kim H, Lim JY, Kim M, Kwak J, Moon JS, Hwang I ( 2008). Proteomic analysis of the proteins regulated by HrpB from the plant pathogenic bacterium Burkholderia glumae. Proteomics 8, 106-121.
DOI URL |
[25] | Kawaradani M, Okada K, Kusakari S ( 2000). New selective medium for isolation of Burkholderia glumae from rice seeds. J Gen Plant Pathol 66, 234-237. |
[26] | Kim S, Park J, Kim JH, Lee J, Bang B, Hwang I, Seo YS ( 2013). RNAseq-based transcriptome analysis of Burk- holderia glumae quorum sensing. Plant Pathol J 29, 249-259. |
[27] | Kim S, Park J, Lee J, Shin D, Park DS, Lim JS, Choi IY, Seo YS ( 2014). Understanding pathogenic Burkholderia glumae metabolic and signaling pathways within rice tissues through in vivo transcriptome analyses. Gene 547, 77-85. |
[28] | Lim J, Lee TH, Nahm BH, Choi YD, Kim M, Hwang I ( 2009). Complete genome sequence of Burkholderia glumae BGR1 . J Bacteriol 191, 3758-3759. |
[29] | Maeda Y, Kiba A, Ohnishi K, Hikichi Y ( 2004). New method to detect oxolinic acid-resistant Burkholderia glumae infesting rice seeds using a mismatch amplification mutation assay polymerase chain reaction. J Gen Plant Pathol 70, 215-217. |
[30] | Magbanua ZV, Arick M 2nd, Buza T, Hsu CY, Showmaker KC, Chouvarine P, Deng P, Peterson DG, Lu S ( 2014). Transcriptomic dissection of the rice- Burkholderia glumae interaction. BMC Genomics 15, 755. |
[31] | Melanson RA, Barphagha I, Osti S, Lelis TP, Karki HS, Chen RX, Shrestha BK, Ham JH ( 2017). Identification of new regulatory genes involved in the pathogenic functions of the rice-pathogenic bacterium Burkholderia glumae . Mi- crobiology 163, 266-279. |
[32] |
Mizobuchi R, Sato H, Fukuoka S, Tanabata T, Tsushima S, Imbe T, Yano M ( 2013a). Mapping a quantitative trait locus for resistance to bacterial grain rot in rice. Rice 6, 13.
DOI |
[33] | Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Imbe T, Yano M ( 2013b). Identification of qRBS1 , a QTL involved in resistance to bacterial seedling rot in rice. Theor Appl Genet 126, 2417-2425. |
[34] | Mizobuchi R, Sato H, Fukuoka S, Tsushima S, Yano M ( 2015). Fine mapping of RBG2, a quantitative trait locus for resistance to Burkholderia glumae, on rice chromosome 1. Mol Breed 35, 15. |
[35] | Nandakumar R, Rush MC ( 2008). Analysis of gene expression in Jupiter rice showing partial resistance to rice panicle blight caused by Burkholderia glumae . Phytopathology 98, 112. |
[36] | Nickzad A, Lépine F, Déziel E ( 2015). Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids. PLoS One 10, e0128509. |
[37] |
Pinson SRM, Shahjahan AKM, Rush MC, Groth DE ( 2010). Bacterial panicle blight resistance QTLs in rice and their association with other disease resistance loci and heading date. Crop Sci 50, 1287-1297.
DOI URL |
[38] |
Sha X, Linscombe SD, Groth DE, Bond JA, White LM, Utomo HS, Dunand RT ( 2006). Registration of ‘Jupiter’ rice. Crop Sci 46, 1811-1812.
DOI URL |
[39] | Suzuki F, Sawada H, Azegami K, Tsuchiya K ( 2004). Molecular characterization of the tox operon involved in toxoflavin biosynthesis of Burkholderia glumae. J Gen Plant Pathol 70, 97-107. |
[40] | Trung HM, Van NV, Vien NV, Lam DT, Lien M ( 1993). Occurrence of rice grain rot disease in Vietnam. Int Rice Res Notes 18, 30. |
[41] | Tsushima S, Mogi S, Naito H, Saito H ( 1989). Existence of Pseudomonas glumae on the rice seeds and development of the simple method for detecting P. glumae from the rice seeds. Bull Kyushu Natl Agric Exp Stn 25, 261-270. |
[42] | Tsushima S, Wakimoto S, Mogi S ( 1986). Selective medium for detecting Pseudomonas glumae Kurita et Tabei, the causal bacterium of grain rot of rice. Jpn J Phytopathol 52, 253-259. |
[1] |
Juan Cui, Xiaoyu Yu, Yuejiao Yu, Chengwei Liang, Jian Sun, Wenfu Chen.
Analysis of Texture Factors and Genetic Basis Influencing the Differences in Eating Quality between Northeast China and Japanese Japonica Rice [J]. Chinese Bulletin of Botany, 2025, 60(4): 1-0. |
[2] | Tong Miao, Wang Huan, Zhang Wenshuang, Wang Chao, Song Jianxiao. Distribution characteristics of antibiotic resistance genes in soil bacterial communities exposed to heavy metal pollution [J]. Biodiv Sci, 2025, 33(3): 24101-. |
[3] | LIU Ke-Yan, HAN Lu, SONG Wu-Ye, ZHANG Chu-Rui, HU Xu, XU Hang, CHEN Li-Xin. Detection of drought effects on photosynthetic stability of vegetation on the Loess Plateau based on solar-induced chlorophyll fluorescence [J]. Chin J Plant Ecol, 2025, 49(3): 415-431. |
[4] | Zhao Ling, Guan Ju, Liang Wenhua, Zhang Yong, Lu Kai, Zhao Chunfang, Li Yusheng, Zhang Yadong. Mapping of QTLs for Heat Tolerance at the Seedling Stage in Rice Based on a High-density Bin Map [J]. Chinese Bulletin of Botany, 2025, 60(3): 342-353. |
[5] | Xinyu Li, Yue Gu, Feifei Xu, Jinsong Bao. Research Progress on Post-translational Modifications of Starch Biosynthesis-related Proteins in Rice Endosperm [J]. Chinese Bulletin of Botany, 2025, 60(2): 256-270. |
[6] | LI Shu-Wen, TANG Lu-Yao, ZHANG Bo-Na, YE Lin-Feng, TONG Jin-Lian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Regional differentiation of cooperative relationships between Ulmus pumila branches and leaves along precipitation gradients [J]. Chin J Plant Ecol, 2025, 49(2): 282-294. |
[7] | Jianguo Li, Yi Zhang, Wenjun Zhang. Iron Plaque Formation and Its Effects on Phosphorus Absorption in Rice Roots [J]. Chinese Bulletin of Botany, 2025, 60(1): 132-143. |
[8] | Nan Chen, Quan-Guo Zhang. The experimental evolution approach [J]. Biodiv Sci, 2024, 32(9): 24171-. |
[9] | Tao Wang, Jinglei Feng, Cui Zhang. Research Progress on Molecular Mechanisms of Heat Stress Affecting the Growth and Development of Maize [J]. Chinese Bulletin of Botany, 2024, 59(6): 963-977. |
[10] | Ruifeng Yao, Daoxin Xie. Activation and Termination of Strigolactone Signal Perception in Rice [J]. Chinese Bulletin of Botany, 2024, 59(6): 873-877. |
[11] | Ziyang Wang, Shengxue Liu, Zhirui Yang, Feng Qin. Genetic Dissection of Drought Resistance in Maize [J]. Chinese Bulletin of Botany, 2024, 59(6): 883-902. |
[12] | Jinjin Lian, Luyao Tang, Yinuo Zhang, Jiaxing Zheng, Chaoyu Zhu, Yuhan Ye, Yuexing Wang, Wennan Shang, Zhenghao Fu, Xinxuan Xu, Richeng Wu, Mei Lu, Changchun Wang, Yuchun Rao. Genetic Locus Mining and Candidate Gene Analysis of Antioxidant Traits in Rice [J]. Chinese Bulletin of Botany, 2024, 59(5): 738-751. |
[13] | Xingxin Liao, Yi Niu, Xingwu Duo, Akeyedeli Jumahazi, Marhaba Abdukuyum, Rizwangul Hufur, Haiyan Lan, Jing Cao. Heterologous Expression of Suaeda aralocaspica SaPEPC2 Gene Improves Drought Resistance and Photosynthesis in Transgenic Tobacco [J]. Chinese Bulletin of Botany, 2024, 59(4): 585-599. |
[14] | Jiahui Huang, Huimin Yang, Xinyu Chen, Chaoyu Zhu, Yanan Jiang, Chengxiang Hu, Jinjin Lian, Tao Lu, Mei Lu, Weilin Zhang, Yuchun Rao. Response Mechanism of Rice Mutant pe-1 to Low Light Stress [J]. Chinese Bulletin of Botany, 2024, 59(4): 574-584. |
[15] | Jianmin Zhou. A Combat Vehicle with a Smart Brake [J]. Chinese Bulletin of Botany, 2024, 59(3): 343-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||