植物学报 ›› 2025, Vol. 60 ›› Issue (2): 294-306.DOI: 10.11983/CBB24119 cstr: 32102.14.CBB24119
• 专题论坛 • 上一篇
收稿日期:
2024-08-07
接受日期:
2024-10-14
出版日期:
2025-03-10
发布日期:
2024-10-16
通讯作者:
王锁民
基金资助:
Yaqi Shi, Haishuang Liu, Jin Ke, Qing Ma, Suomin Wang*()
Received:
2024-08-07
Accepted:
2024-10-14
Online:
2025-03-10
Published:
2024-10-16
Contact:
Suomin Wang
摘要: 环核苷酸门控通道(cyclic nucleotide-gated channels, CNGCs)是植物体内重要的阳离子通道, 在调控植物生长发育以及应对冷、热、盐和病原菌等胁迫中发挥重要作用。该文简要概述了植物CNGCs的分类、结构及表达定位, 并重点对其离子选择特征、调控机制以及生物学功能的最新研究进展进行综述, 以期增进对植物CNGCs蛋白的全面认识, 并为后续深入研究提供参考。
石雅琦, 刘海双, 柯瑾, 马清, 王锁民. 植物环核苷酸门控离子通道研究进展. 植物学报, 2025, 60(2): 294-306.
Yaqi Shi, Haishuang Liu, Jin Ke, Qing Ma, Suomin Wang. Research Advances in Cyclic Nucleotide-gated Ion Channels in Plants. Chinese Bulletin of Botany, 2025, 60(2): 294-306.
物种 | 霸王 | 四合木 | 小花碱茅 | 藜麦 | 桃金娘 | 毛果杨 | 葡萄 | 拟南芥 |
---|---|---|---|---|---|---|---|---|
CNGC1基因数量 | 9 | 2 | 3 | 2 | 2 | 2 | 2 | 1 |
表1 不同植物中CNGC1同源基因的数量(Ma et al., 2024)
Table 1 Number of CNGC1 orthologs in different plants (Ma et al., 2024)
物种 | 霸王 | 四合木 | 小花碱茅 | 藜麦 | 桃金娘 | 毛果杨 | 葡萄 | 拟南芥 |
---|---|---|---|---|---|---|---|---|
CNGC1基因数量 | 9 | 2 | 3 | 2 | 2 | 2 | 2 | 1 |
图2 环核苷酸门控通道(CNGC)的结构 S1-S6代表跨膜结构域。P: 磷脂; CaMBD: 钙调素结合结构域; CNBD: 环核苷酸结合结构域; IQ: 异亮氨酸-谷氨酰胺基序
Figure 2 Cyclic nucleotide-gated channel (CNGC) structure S1-S6 represent the transmembrane domains; P: Phospholipids; CaMBD: Calmodulin-binding domain; CNBD: Cyclic nucleotide-binding domain; IQ: Isoleucine-glutamine motif
蛋白 | 亚细胞定位 | 组织特异性 | 可渗透离子 | 功能 | 参考文献 |
---|---|---|---|---|---|
AtCNGC1 | 质膜 | 根 | Ca2+、Mg2+和Pb2+ | 根的向地性生长; 重金属离子吸收 | Sunkar et al., |
AtCNGC2 | 质膜 | 叶脉末端周围的细胞 | Ca2+、Mg2+、K+、Li+、Cs+、Rb+、Sr2+和Ba2+ | 植物免疫; 叶片衰老; 耐热、耐寒性; 成花转变; 生长素稳态 | Leng et al., |
AtCNGC3 | 质膜 | 根表皮及皮层、叶脉 | Na+和K+ | 离子稳态; 种子萌发; 植物免疫 | Gobert et al., |
AtCNGC4 | 质膜 | 叶表皮、胚轴、根毛区、根的伸长区和分生区 | Ca2+、Mg2+、Ba2+、Sr2+、K+ 、Na+和Cs+ | 植物免疫; 程序性细胞死亡; 耐热、耐寒性; 成花转变 | Balagué et al., |
AtCNGC5 | 质膜 | 保卫细胞和根毛 | Ca2+、Mg2+和Ba2+ | 耐盐性; 根毛生长; 生长素信号 | Wang et al., |
AtCNGC6 | 质膜 | 保卫细胞和根毛 | Ca2+、Mg2+和Ba2+ | 耐盐性; 根毛生长; 生长素信号; 耐热性 | Gao et al., |
AtCNGC7 AtCNGC8 | 质膜 | 花粉管尖端 | Ca2+ | 花粉管生长 | Tunc-Ozdemir et al., |
AtCNGC9 | 质膜 | 保卫细胞和根毛 | Ca2+ | 根毛生长; 生长素信号 | Brost et al., |
AtCNGC10 | 质膜、内质网及高尔基体囊泡 | 叶肉细胞、叶片栅栏薄壁组织、叶表皮、根表皮及内皮层和花 | Na+、K+和Pb2+ | 离子稳态; 耐盐性; 根向地性生长; 花粉发育 | Li et al., |
AtCNGC11 | 质膜 | - | Ca2+、Pb2+和Cd2+ | 植物免疫; 细胞死亡 | Urquhart et al., |
AtCNGC12 | 质膜 | 保卫细胞 | Ca2+和Mg2+ | 植物免疫; 细胞死亡; 生长素信号 | Urquhart et al., |
AtCNGC13 | - | - | Pb2+和Cd2+ | 重金属离子吸收 | Moon et al., |
AtCNGC14 | 质膜 | 根毛 | Ca2+ | 根毛生长; 根的向地性 生长 | Shih et al., |
AtCNGC15 | 质膜及核膜 | 主根和侧根的根尖、侧根原基和保卫细胞 | Ca2+、Pb2+和Cd2+ | 根的发育 | Moon et al., |
AtCNGC16 | - | 花粉管 | Ca2+和Cd2+ | 逆境胁迫下的花粉育性 | Tunc-Ozdemir et al., |
AtCNGC17 | 质膜 | - | Ca2+和K+ | 细胞扩张; 耐盐性 | Ladwig et al., |
AtCNGC18 | 质膜 | 花粉管尖端 | Ca2+ | 花粉管的生长和导向 | Gao et al., |
AtCNGC19 | 质膜 | 叶脉周围的叶肉细胞和根韧皮部 | Ca2+、Na+、Pb2+和Cd2+ | 植物免疫; 耐盐性; 植食反应; 细胞死亡 | Kugler et al., |
AtCNGC20 | 质膜 | 叶脉周围的叶肉细胞 | Ca2+、Na+和Cd2+ | 植物免疫; 耐盐性; 细胞死亡; 耐寒性 | Kugler et al., |
表2 拟南芥环核苷酸门控通道(CNGCs)的定位、离子选择性及其功能
Table 2 Localization, ion selectivity and function of cyclic nucleotide-gated channels (CNGCs) in Arabidopsis
蛋白 | 亚细胞定位 | 组织特异性 | 可渗透离子 | 功能 | 参考文献 |
---|---|---|---|---|---|
AtCNGC1 | 质膜 | 根 | Ca2+、Mg2+和Pb2+ | 根的向地性生长; 重金属离子吸收 | Sunkar et al., |
AtCNGC2 | 质膜 | 叶脉末端周围的细胞 | Ca2+、Mg2+、K+、Li+、Cs+、Rb+、Sr2+和Ba2+ | 植物免疫; 叶片衰老; 耐热、耐寒性; 成花转变; 生长素稳态 | Leng et al., |
AtCNGC3 | 质膜 | 根表皮及皮层、叶脉 | Na+和K+ | 离子稳态; 种子萌发; 植物免疫 | Gobert et al., |
AtCNGC4 | 质膜 | 叶表皮、胚轴、根毛区、根的伸长区和分生区 | Ca2+、Mg2+、Ba2+、Sr2+、K+ 、Na+和Cs+ | 植物免疫; 程序性细胞死亡; 耐热、耐寒性; 成花转变 | Balagué et al., |
AtCNGC5 | 质膜 | 保卫细胞和根毛 | Ca2+、Mg2+和Ba2+ | 耐盐性; 根毛生长; 生长素信号 | Wang et al., |
AtCNGC6 | 质膜 | 保卫细胞和根毛 | Ca2+、Mg2+和Ba2+ | 耐盐性; 根毛生长; 生长素信号; 耐热性 | Gao et al., |
AtCNGC7 AtCNGC8 | 质膜 | 花粉管尖端 | Ca2+ | 花粉管生长 | Tunc-Ozdemir et al., |
AtCNGC9 | 质膜 | 保卫细胞和根毛 | Ca2+ | 根毛生长; 生长素信号 | Brost et al., |
AtCNGC10 | 质膜、内质网及高尔基体囊泡 | 叶肉细胞、叶片栅栏薄壁组织、叶表皮、根表皮及内皮层和花 | Na+、K+和Pb2+ | 离子稳态; 耐盐性; 根向地性生长; 花粉发育 | Li et al., |
AtCNGC11 | 质膜 | - | Ca2+、Pb2+和Cd2+ | 植物免疫; 细胞死亡 | Urquhart et al., |
AtCNGC12 | 质膜 | 保卫细胞 | Ca2+和Mg2+ | 植物免疫; 细胞死亡; 生长素信号 | Urquhart et al., |
AtCNGC13 | - | - | Pb2+和Cd2+ | 重金属离子吸收 | Moon et al., |
AtCNGC14 | 质膜 | 根毛 | Ca2+ | 根毛生长; 根的向地性 生长 | Shih et al., |
AtCNGC15 | 质膜及核膜 | 主根和侧根的根尖、侧根原基和保卫细胞 | Ca2+、Pb2+和Cd2+ | 根的发育 | Moon et al., |
AtCNGC16 | - | 花粉管 | Ca2+和Cd2+ | 逆境胁迫下的花粉育性 | Tunc-Ozdemir et al., |
AtCNGC17 | 质膜 | - | Ca2+和K+ | 细胞扩张; 耐盐性 | Ladwig et al., |
AtCNGC18 | 质膜 | 花粉管尖端 | Ca2+ | 花粉管的生长和导向 | Gao et al., |
AtCNGC19 | 质膜 | 叶脉周围的叶肉细胞和根韧皮部 | Ca2+、Na+、Pb2+和Cd2+ | 植物免疫; 耐盐性; 植食反应; 细胞死亡 | Kugler et al., |
AtCNGC20 | 质膜 | 叶脉周围的叶肉细胞 | Ca2+、Na+和Cd2+ | 植物免疫; 耐盐性; 细胞死亡; 耐寒性 | Kugler et al., |
[1] |
Balagué C, Lin BQ, Alcon C, Flottes G, Malmström S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003). HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15, 365-379.
DOI PMID |
[2] |
Baloch AA, Raza AM, Rana SSA, Ullah S, Khan S, Zaib-Un-Nisa, Zahid H, Malghani GK, Kakar KU (2021). BrCNGC gene family in field mustard: genome-wide identification, characterization, comparative synteny, evolution and expression profiling. Sci Rep 11, 24203.
DOI PMID |
[3] | Brost C, Studtrucker T, Reimann R, Denninger P, Czekalla J, Krebs M, Fabry B, Schumacher K, Grossmann G, Dietrich P (2019). Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. Plant J 99, 910-923. |
[4] |
Chakraborty S, Toyota M, Moeder W, Chin K, Fortuna A, Champigny M, Vanneste S, Gilroy S, Beeckman T, Nambara E, Yoshioka K (2021). CYCLIC NUCLEOTIDE-GATED ION CHANNEL 2 modulates auxin homeostasis and signaling. Plant Physiol 187, 1690-1703.
DOI PMID |
[5] |
Chang F, Yan A, Zhao LN, Wu WH, Yang ZB (2007). A putative calcium-permeable cyclic nucleotide-gated channel, CNGC18, regulates polarized pollen tube growth. J Integr Plant Biol 49, 1261-1270.
DOI |
[6] |
Charpentier M, Sun J, Vaz Martins T, Radhakrishnan GV, Findlay K, Soumpourou E, Thouin J, Véry AA, Sanders D, Morris RJ, Oldroyd GED (2016). Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352, 1102-1105.
DOI PMID |
[7] | Chen JQ, Yin H, Gu JP, Li LT, Liu Z, Jiang XT, Zhou HS, Wei SW, Zhang SL, Wu JY (2015). Genomic characterization, phylogenetic comparison and differential expression of the cyclic nucleotide-gated channels gene family in pear (Pyrus bretchneideri Rehd.). Genomics 105, 39-52. |
[8] | Chen QQ (2022). Ion selectivity analysis of ZxCNGC1;2 and ZxCNGC2;1-ZxCNGC4 complex from Zygophyllum xanthoxylum. Master’s thesis. Lanzhou: Lanzhou University. pp. 1-86. (in Chinese) |
陈芹芹 (2022). 霸王ZxCNGC1;2和ZxCNGC2;1-ZxCNGC4复合体的离子选择性分析. 硕士论文. 兰州: 兰州大学. pp. 1-86. | |
[9] | Chin K, DeFalco TA, Moeder W, Yoshioka K (2013). The Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition. Plant Phy- siol 163, 611-624. |
[10] | Chin K, Moeder W, Yoshioka K (2009). Biological roles of cyclic-nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family. Botany 87, 668-677. |
[11] |
Christopher DA, Borsics T, Yuen CYL, Ullmer W, Andème-Ondzighi C, Andres MA, Kang BH, Staehelin LA (2007). The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol 7, 48.
PMID |
[12] |
Cui YM, Lu S, Li Z, Cheng JW, Hu P, Zhu TQ, Wang X, Jin M, Wang XX, Li LQ, Huang SY, Zou BH, Hua J (2020). CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol 183, 1794-1808.
DOI PMID |
[13] | Cui YX, Wang JX, Bai YX, Ban LP, Ren JD, Shang QX, Li WY (2023). Identification of CNGCs in Glycine max and screening of related resistance genes after Fusarium solani infection. Biology 12, 439. |
[14] | DeFalco TA, Marshall CB, Munro K, Kang HG, Moeder W, Ikura M, Snedden WA, Yoshioka K (2016). Multiple calmodulin-binding sites positively and negatively regulate Arabidopsis CYCLIC NUCLEOTIDE-GATED CHANNEL12. Plant Cell 28, 1738-1751. |
[15] |
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014). Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65, 1259-1270.
DOI PMID |
[16] |
Dietrich P, Moeder W, Yoshioka K (2020). Plant cyclic nucleotide-gated channels: new insights on their functions and regulation. Plant Physiol 184, 27-38.
DOI PMID |
[17] | Duszyn M, Świeżawska B, Szmidt-Jaworska A, Jaworski K (2019). Cyclic nucleotide gated channels (CNGCs) in plant signaling—current knowledge and perspectives. J Plant Physiol 241, 153035. |
[18] | Fang XM, Liu BB, Kong HY, Zeng JY, Feng YX, Xiao CB, Shao QS, Huang XM, Wu YJ, Bao AK, Li J, Luan S, He K (2024). Two calcium sensor-activated kinases function in root hair growth. Plant Physiol 196, 1534-1545. |
[19] | Finka A, Cuendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P (2012). Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24, 3333-3348. |
[20] | Gao F, Han XW, Wu JH, Zheng SZ, Shang ZL, Sun DY, Zhou RG, Li B (2012). A heat-activated calcium-permeable channel—Arabidopsis cyclic nucleotide-gated ion channel 6—is involved in heat shock responses. Plant J 70, 1056-1069. |
[21] | Gao QF, Gu LL, Wang HQ, Fei CF, Fang X, Hussain J, Sun SJ, Dong JY, Liu HT, Wang YF (2016). Cyclic nucleotide-gated channel 18 is an essential Ca2+ channel in pollen tube tips for pollen tube guidance to ovules in Arabidopsis. Proc Natl Acad Sci USA 113, 3096-3101. |
[22] | Gao TT, Zhang ZJ, Liu XM, Wu Q, Chen Q, Liu QW, van Nocker S, Ma FW, Li C (2020). Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiol Biochem 148, 260-272. |
[23] | Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJM (2006). Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57, 791-800. |
[24] | Guo J, Islam MA, Lin HC, Ji CA, Duan YH, Liu P, Zeng QD, Day B, Kang ZS, Guo J (2018). Genome-wide identification of cyclic nucleotide-gated ion channel gene family in wheat and functional analyses of TaCNGC14and TaCNGC16. Front Plant Sci 9, 18. |
[25] | Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008). The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134, 499-507. |
[26] | Hao YR, Lai CW, Liu L, Zhou YY, Liu JL, He TB (2023). Identification and analysis of CNGC family genes in potato (Solanum tuberosum). Mol Plant Breed 1-14. (in Chinese) |
郝宇瑞, 赖长巍, 刘恋, 周盈盈, 刘佳丽, 何腾兵 (2023). 马铃薯CNGC家族全基因组鉴定和组织特异性分析. 分子植物育种 1-14. | |
[27] | Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003a). Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132, 1353-1361. |
[28] | Hua BG, Mercier RW, Zielinski RE, Berkowitz GA (2003b). Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 41, 945-954. |
[29] |
Janz D, Polle A (2012). Harnessing salt for woody biomass production. Tree Physiol 32, 1-3.
DOI PMID |
[30] | Jarratt-Barnham E, Wang LM, Ning YZ, Davies JM (2021). The complex story of plant cyclic nucleotide-gated channels. Int J Mol Sci 22, 874. |
[31] | Jiang Z, Du LH, Shen L, He J, Xia X, Zhang LH, Yang X (2023). Genome-wide exploration and expression analysis of the CNGC gene family in eggplant (Solanum melongena L.) under cold stress, with functional characterization of SmCNGC1a. Int J Mol Sci 24, 13049. |
[32] | Jin YK, Jing W, Zhang Q, Zhang WH (2015). Cyclic nucleotide gated channel 10 negatively regulates salt tolerance by mediating Na+ transport in Arabidopsis. J Plant Res 128, 211-220. |
[33] | Jogawat A, Meena MK, Kundu A, Varma M, Vadassery J (2020). Calcium channel CNGC19 mediates basal defense signaling to regulate colonization by Piriformospora indica in Arabidopsis roots. J Exp Bot 71, 2752-2768. |
[34] | Kakar KU, Nawaz Z, Kakar K, Ali E, Almoneafy AA, Ullah R, Ren XL, Shu QY (2017). Comprehensive genomic analysis of the CNGC gene family in Brassica oleracea: novel insights into synteny, structures, and transcript profiles. BMC Genomics 18, 869. |
[35] | Katano K, Kataoka R, Fujii M, Suzuki N (2018). Differences between seedlings and flowers in anti-ROS based heat responses of Arabidopsis plants deficient in cyclic nucleotide gated channel 2. Plant Physiol Biochem 123, 288-296. |
[36] |
Köhler C, Neuhaus G (2000). Characterisation of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBS Lett 471, 133-136.
PMID |
[37] | Kugler A, Köhler B, Palme K, Wolff P, Dietrich P (2009). Salt-dependent regulation of a CNG channel subfamily in Arabidopsis. BMC Plant Biol 9, 140. |
[38] | Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M (2015). Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H+-ATPase, and BAK1. Plant Cell 27, 1718-1729. |
[39] | Lee SK, Lee SM, Kim MH, Park SK, Jung KH (2022). Genome-wide analysis of cyclic nucleotide-gated channel genes related to pollen development in rice. Plants (Basel) 11, 3145. |
[40] |
Leitão N, Dangeville P, Carter R, Charpentier M (2019). Nuclear calcium signatures are associated with root development. Nat Commun 10, 4865.
DOI PMID |
[41] |
Lemtiri-Chlieh F, Berkowitz GA (2004). Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. J Biol Chem 279, 35306-35312.
DOI PMID |
[42] |
Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002). Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128, 400-410.
DOI PMID |
[43] |
Leng Q, Mercier RW, Yao WZ, Berkowitz GA (1999). Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol 121, 753-761.
PMID |
[44] |
Li QQ, Yang SQ, Ren J, Ye XL, Jiang X, Liu ZY (2019). Genome-wide identification and functional analysis of the cyclic nucleotide-gated channel gene family in Chinese cabbage. 3 Biotech 9, 114.
DOI PMID |
[45] | Li XL, Borsics T, Harrington HM, Christopher DA (2005). Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Funct Plant Biol 32, 643-653. |
[46] | Liu HJ, Du LQ, Lin JX, Li RL (2015). Recent advances in cyclic nucleotide-gated ion channels with their functions in plants. Chin Bull Bot 50, 779-789. (in Chinese) |
刘海娇, 杜立群, 林金星, 李瑞丽 (2015). 植物环核苷酸门控离子通道及其功能研究进展. 植物学报 50, 779-789.
DOI |
|
[47] | Liu MJ (2021). Functions and molecular mechanisms of cyclic nucleotide-gated ion channels (CNGCs) in regulating plant resistance to Sclerotinia sclerotiorum. Master’s thesis. Hangzhou: Zhejiang University. pp. 1-84. (in Chinese) |
刘梦娇 (2021). 环核苷酸门控离子通道(CNGCs)对植物抗核盘菌的调控功能及机制分析. 硕士论文. 杭州: 浙江大学. pp. 1-84. | |
[48] | Lu S, Zhu TQ, Luo LL, Ouyang N, Hua J, Zou BH (2022a). Divergent roles of CNGC2 and CNGC4 in the regulation of disease resistance, plant growth and heat tolerance in Arabidopsis. Agronomy 12, 2176. |
[49] | Lu ZY, Yin G, Chai M, Sun L, Wei HL, Chen J, Yang YF, Fu XK, Li SY (2022b). Systematic analysis of CNGCs in cotton and the positive role of GhCNGC32 and GhCNGC35 in salt tolerance. BMC Genomics 23, 560. |
[50] |
Luan S, Wang C (2021). Calcium signaling mechanisms across kingdoms. Annu Rev Cell Dev Biol 37, 311-340.
DOI PMID |
[51] |
Ma Q, Liu HS, Li HJ, Bai WP, Gao QF, Wu SD, Yin XX, Chen QQ, Shi YQ, Gao TG, Bao AK, Yin HJ, Li L, Rowland O, Hepworth SR, Luan S, Wang SM (2024). Genomic analysis reveals phylogeny of Zygophyllales and mechanism for water retention of a succulent xerophyte. Plant Physiol 195, 617-639.
DOI PMID |
[52] | Ma Q, Yue LJ, Zhang JL, Wu GQ, Bao AK, Wang SM (2012). Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiol 32, 4-13. |
[53] | Ma W, Ali R, Berkowitz GA (2006). Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 44, 494-505. |
[54] | Ma W, Smigel A, Walker RK, Moeder W, Yoshioka K, Berkowitz GA (2010). Leaf senescence signaling: the Ca2+-conducting Arabidopsis cyclic nucleotide gated chan- nel2 acts through nitric oxide to repress senescence programming. Plant Physiol 154, 733-743. |
[55] |
Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001). Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126, 1646-1667.
DOI PMID |
[56] | Meena MK, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew MK, Boland W, Mithöfer A, Vadassery J (2019). The Ca2+ channel CNGC19 regulates Arabidopsis defense against spodoptera herbivory. Plant Cell 31, 1539-1562. |
[57] |
Moeder W, Urquhart W, Ung H, Yoshioka K (2011). The role of cyclic nucleotide-gated ion channels in plant immunity. Mol Plant 4, 442-452.
DOI PMID |
[58] | Moon JY, Belloeil C, Ianna ML, Shin R (2019). Arabidopsis CNGC family members contribute to heavy metal ion uptake in plants. Int J Mol Sci 20, 413. |
[59] |
Nawaz Z, Kakar KU, Saand MA, Shu QY (2014). Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics 15, 853.
DOI PMID |
[60] | Nawaz Z, Kakar KU, Ullah R, Yu SZ, Zhang J, Shu QY, Ren XL (2019). Genome-wide identification, evolution and expression analysis of cyclic nucleotide-gated channels in tobacco (Nicotiana tabacum L.). Genomics 111, 142-158. |
[61] |
Oranab S, Ghaffar A, Kiran S, Yameen M, Munir B, Zulfiqar S, Abbas S, Batool F, Farooq MU, Ahmad B, Ilyas H, Ahmad A (2021). Molecular characterization and expression of cyclic nucleotide gated ion channels 19 and 20 in Arabidopsis thaliana for their potential role in salt stress. Saudi J Biol Sci 28, 5800-5807.
DOI PMID |
[62] | Pan YJ, Chai XY, Gao QF, Zhou LM, Zhang SS, Li LG, Luan S (2019). Dynamic interactions of plant CNGC subunits and calmodulins drive oscillatory Ca2+channel activities. Dev Cell 48, 710-725. |
[63] |
Pantoja O (2021). Recent advances in the physiology of ion channels in plants. Annu Rev Plant Biol 72, 463-495.
DOI PMID |
[64] | Peng X, Zhang XN, Li B, Zhao LQ (2019). Cyclic nucleotide-gated ion channel 6 mediates thermotolerance in Arabidopsis seedlings by regulating nitric oxide production via cytosolic calcium ions. BMC Plant Biol 19, 368. |
[65] | Peng Y, Ming YH, Jiang BC, Zhang XY, Fu DY, Lin QH, Zhang XY, Wang Y, Shi YT, Gong ZZ, Ding YL, Yang SH (2024). Differential phosphorylation of Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 modulates calcium-mediated freezing tolerance in Arabidopsis. Plant Cell 36, 4356-4371. |
[66] |
Schuurink RC, Shartzer SF, Fath A, Jones RL (1998). Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc Natl Acad Sci USA 95, 1944-1949.
PMID |
[67] | Serre NBC, Wernerová D, Vittal P, Dubey SM, Medvecká E, Jelínková A, Petrášek J, Grossmann G, Fendrych M (2023). The AUX1-AFB1-CNGC14 module establishes a longitudinal root surface pH profile. eLife 12, e85193. |
[68] | Shih HW, DePew CL, Miller ND, Monshausen GB (2015). The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana. Curr Biol 25, 3119-3125. |
[69] |
Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000). Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24, 533-542.
DOI PMID |
[70] |
Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003). CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8, 286-293.
PMID |
[71] | Tan YQ, Yang Y, Shen X, Zhu MJ, Shen JL, Zhang W, Hu HH, Wang YF (2023). Multiple cyclic nucleotide-gated channels function as ABA-activated Ca2+ channels required for ABA-induced stomatal closure in Arabidopsis. Plant Cell 35, 239-259. |
[72] | Tan YQ, Yang Y, Zhang A, Fei CF, Gu LL, Sun SJ, Xu W, Wang LL, Liu HT, Wang YF (2020). Three CNGC family members, CNGC5, CNGC6, and CNGC9, are required for constitutive growth of Arabidopsis root hairs as Ca2+-permeable channels. Plant Commun 1, 100001. |
[73] | Tian W, Hou CC, Ren ZJ, Wang C, Zhao FG, Dahlbeck D, Hu SP, Zhang LY, Niu Q, Li LG, Staskawicz BJ, Luan S (2019). A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature 572, 131-135. |
[74] | Tunc-Ozdemir M, Rato C, Brown E, Rogers S, Mooneyham A, Frietsch S, Myers CT, Poulsen LR, Malhó R, Harper JF (2013a). Cyclic nucleotide gated channels 7 and 8 are essential for male reproductive fertility. PLoS One 8, e55277. |
[75] | Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013b). A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161, 1010-1020. |
[76] |
Urquhart W, Gunawardena AHLAN, Moeder W, Ali R, Berkowitz GA, Yoshioka K (2007). The chimeric cyclic nucleotide-gated ion channel AtCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent man- ner. Plant Mol Biol 65, 747-761.
DOI PMID |
[77] | Wang C, Tang RJ, Kou SH, Xu XS, Lu Y, Rauscher K, Voelker A, Luan S (2024). Mechanisms of calcium homeostasis orchestrate plant growth and immunity. Nature 627, 382-388. |
[78] |
Wang JC, Liu X, Zhang A, Ren YL, Wu FQ, Wang G, Xu Y, Lei CL, Zhu SS, Pan T, Wang YF, Zhang H, Wang F, Tan YQ, Wang YP, Jin X, Luo S, Zhou CL, Zhang X, Liu JL, Wang S, Meng LZ, Wang YH, Chen X, Lin QB, Zhang X, Guo XP, Cheng ZJ, Wang JL, Tian YL, Liu SJ, Jiang L, Wu CY, Wang ET, Zhou JM, Wang YF, Wang HY, Wan JM (2019). A cyclic nucleotide-gated channel mediates cytoplasmic calcium elevation and disease resistance in rice. Cell Res 29, 820-831.
DOI PMID |
[79] | Wang JC, Ren YL, Liu X, Luo S, Zhang X, Liu X, Lin QB, Zhu SS, Wan H, Yang Y, Zhang Y, Lei B, Zhou CL, Pan T, Wang YF, Wu MM, Jing RN, Xu Y, Han M, Wu FQ, Lei CL, Guo XP, Cheng ZJ, Zheng XM, Wang YH, Zhao ZG, Jiang L, Zhang X, Wang YF, Wang HY, Wan JM (2021a). Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice. Mol Plant 14, 315-329. |
[80] | Wang SM, Wan CG, Wang YR, Chen H, Zhou ZY, Fu H, Sosebee RE (2004). The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. J Arid Environ 56, 525-539. |
[81] | Wang SM, Zheng WJ, Ren JZ, Zhang CL (2002). Selectivity of various types of salt-resistant plants for K+ over Na+. J Arid Environ 52, 457-472. |
[82] | Wang XH, Feng CX, Tian LL, Hou CC, Tian W, Hu B, Zhang Q, Ren ZJ, Niu Q, Song JL, Kong DD, Liu LY, He YK, Ma LG, Chu CC, Luan S, Li LG (2021b). A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis. Mol Plant 14, 774-786. |
[83] | Wang YF, Munemasa S, Nishimura N, Ren HM, Robert N, Han M, Puzõrjova I, Kollist H, Lee S, Mori I, Schroeder JI (2013). Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells. Plant Physiol 163, 578-590. |
[84] | Wu GQ, Xi JJ, Wang Q, Bao AK, Ma Q, Zhang JL, Wang SM (2011). The ZxNHX gene encoding tonoplast Na+/H+ antiporter from the xerophyte Zygophyllum xanthoxylum plays important roles in response to salt and drought. J Plant Physiol 168, 758-767. |
[85] | Xu Y, Yang J, Wang YH, Wang JC, Yu Y, Long Y, Wang YL, Zhang H, Ren YL, Chen J, Wang Y, Zhang X, Guo XP, Wu FQ, Zhu SS, Lin QB, Jiang L, Wu CY, Wang HY, Wan JM (2017). OsCNGC13 promotes seed-setting rate by facilitating pollen tube growth in stylar tissues. PLoS Genet 13, e1006906. |
[86] | Yan C, Fan M, Yang M, Zhao JP, Zhang WH, Su Y, Xiao LT, Deng HT, Xie DX (2018). Injury activates Ca2+/ calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol Cell 70, 136-149. |
[87] | Yang Y, Tan YQ, Wang XY, Li JJ, Du BY, Zhu MJ, Wang PC, Wang YF (2024). OPEN STOMATA 1 phosphorylates CYCLIC NUCLEOTIDE-GATED CHANNELs to trigger Ca2+ signaling for abscisic acid-induced stomatal closure in Arabidopsis. Plant Cell 36, 2328-2358. |
[88] |
Yu X, Xie YP, Luo DX, Liu H, Qi PP, Kim SI, Ortiz-Morea FA, Liu J, Chen YF, Chen SX, Rodrigues B, Li B, Xue SW, He P, Shan LB (2023). A phospho-switch constrains BTL2-mediated phytocytokine signaling in plant immunity. Cell 186, 2329-2344.
DOI PMID |
[89] | Yu X, Xu GY, Li B, de Souza Vespoli L, Liu H, Moeder W, Chen SX, de Souza SA, Shao WY, Rodrigues B, Ma Y, Chhajed S, Xue SW, Berkowitz GA, Yoshioka K, He P, Shan LB (2019). The receptor kinases BAK1/SERK4 regulate Ca2+channel-mediated cellular homeostasis for cell death containment. Curr Biol 29, 3778-3790. |
[90] | Yuan HJ, Ma Q, Wu GQ, Wang P, Hu J, Wang SM (2015). ZxNHX controls Na+ and K+ homeostasis at the whole- plant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. Ann Bot 115, 495-507. |
[91] | Yuen CCY, Christopher DA (2013). The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. AoB Plants 5, plt012. |
[92] | Zeb Q, Wang XH, Hou CC, Zhang XW, Dong MQ, Zhang SS, Zhang Q, Ren ZJ, Tian W, Zhu HF, Li LG, Liu LY (2020). The interaction of CaM7 and CNGC14 regulates root hair growth in Arabidopsis. J Integr Plant Biol 62, 887-896. |
[93] |
Zelman AK, Dawe A, Gehring C, Berkowitz GA (2012). Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 3, 95.
DOI PMID |
[94] |
Zhang SS, Pan YJ, Tian W, Dong MQ, Zhu HF, Luan S, Li LG (2017). Arabidopsis CNGC14 mediates calcium influx required for tip growth in root hairs. Mol Plant 10, 1004-1006.
DOI PMID |
[95] | Zhang WW, Dong CH, Zhang YG, Zhu J, Dai HY, Bai SH (2018). An apple cyclic nucleotide-gated ion channel gene highly responsive to Botryosphaeria dothidea infection enhances the susceptibility of Nicotiana benthamiana to bacterial and fungal pathogens. Plant Sci 269, 94-105. |
[96] | Zhang YJ, Li YB, Yang J, Yang XL, Chen SB, Xie ZL, Zhang MJ, Huang YL, Zhang JH, Huang X (2023). Genome-wide analysis and expression of Cyclic Nucleotide-Gated Ion Channel (CNGC) family genes under cold stress in mango (Mangifera indica). Plants 12, 592. |
[97] | Zhang ZL, Hou CC, Tian W, Li LG, Zhu HF (2019). Electrophysiological studies revealed CaM1-mediated regulation of the Arabidopsis calcium channel CNGC12. Front Plant Sci 10, 1090. |
[98] | Zhao CH, Tang YH, Wang JL, Zeng YH, Sun HQ, Zheng ZC, Su R, Schneeberger K, Parker JE, Cui HT (2021). A mis-regulated cyclic nucleotide-gated channel mediates cytosolic calcium elevation and activates immunity in Arabidopsis. New Phytol 230, 1078-1094. |
[99] | Zheng LY, Yu YY, Zheng Y, Wang YX, Wu N, Jiang CH, Zhao HW, Niu DD (2024). Long small RNA76113 targets CYCLIC NUCLEOTIDE-GATED ION CHANNEL 5 to repress disease resistance in rice. Plant Physiol 194, 1889-1905. |
[100] |
Zhou LM, Lan WZ, Jiang YQ, Fang W, Luan S (2014). A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant 7, 369-376.
DOI PMID |
[101] | Zia K, Rao MJ, Sadaqat M, Azeem F, Fatima K, Qamar MTU, Alshammari A, Alharbi M (2022). Pangenome- wide analysis of cyclic nucleotide-gated channel (CNGC) gene family in Citrus spp. revealed their intraspecies diversity and potential roles in abiotic stress tolerance. Front Genet 13, 1034921. |
[1] | 王亚萍, 包文泉, 白玉娥. 单细胞转录组学在植物生长发育及胁迫响应中的应用进展[J]. 植物学报, 2025, 60(1): 101-113. |
[2] | 杜志烨, 李明玉, 陈稷, 黄进. 植物胁迫相关蛋白功能研究进展[J]. 植物学报, 2024, 59(1): 110-121. |
[3] | 园园, 恩和巴雅尔, 齐艳华. 植物GH3基因家族生物学功能研究进展[J]. 植物学报, 2023, 58(5): 770-782. |
[4] | 侯新村, 滕珂, 郭强, 赵春桥, 高康, 岳跃森, 范希峰. 狼尾草属牧草研究进展[J]. 植物学报, 2022, 57(6): 814-825. |
[5] | 孙万梅, 王晓珠, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊. 亲免素在植物体内的功能研究进展[J]. 植物学报, 2017, 52(6): 808-819. |
[6] | 王家宜, 余涵霞, 赖玉芳, 万方浩, 钱万强, 彭长连, 李伟华. 入侵杂草薇甘菊与本地植物粉葛对水分胁迫的生理响应[J]. 生物多样性, 2017, 25(12): 1267-1275. |
[7] | 杨顺, 孙微, 刘杏忠, 向梅春. 石生真菌研究现状与展望[J]. 生物多样性, 2016, 24(9): 1068-1076. |
[8] | 刘晓东, 王若仲, 焦彬彬, 代培红, 李月. 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应[J]. 植物学报, 2016, 51(5): 586-593. |
[9] | 周丛义, 吴国利, 段壮芹, 吴丽丽, 高永生, 陈坤明. H2O2-NOX系统: 一种植物体内重要的发育调控与胁迫响应机制[J]. 植物学报, 2010, 45(05): 615-631. |
[10] | 何恒斌, 贾昆峰, 贾桂霞, 丁琼. 沙冬青根瘤菌的抗逆性[J]. 植物生态学报, 2006, 30(1): 140-146. |
[11] | 赵立群 崔素霞张立新 张承烈. 细胞培养技术在植物抗性生理研究领域中的应用[J]. 植物学报, 2003, 20(03): 346-353. |
[12] | 李朝霞 赵世杰 孟庆伟. 光呼吸途径及其功能[J]. 植物学报, 2003, 20(02): 190-197. |
[13] | 王三根. 细胞分裂素在植物抗逆和延衰中的作用[J]. 植物学报, 2000, 17(02): 121-126. |
[14] | 梁宇 高玉葆. 内生真菌对植物生长发育及抗逆性的影响[J]. 植物学报, 2000, 17(01): 52-59. |
[15] | 丁圣彦. 常绿阔叶林的几个主要树种抗逆性的比较研究[J]. 植物生态学报, 1999, 23(199901): 158-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||