植物学报 ›› 2022, Vol. 57 ›› Issue (6): 814-825.DOI: 10.11983/CBB22195
所属专题: 饲草生物学专辑 (2023年58卷2期、2022年57卷6期)
侯新村, 滕珂, 郭强, 赵春桥, 高康, 岳跃森(), 范希峰()
收稿日期:
2022-08-16
接受日期:
2022-11-15
出版日期:
2022-11-01
发布日期:
2022-11-18
通讯作者:
岳跃森,范希峰
作者简介:
fanxifeng@baafs.net.cn基金资助:
Xincun Hou, Ke Teng, Qiang Guo, Chunqiao Zhao, Kang Gao, Yuesen Yue(), Xifeng Fan()
Received:
2022-08-16
Accepted:
2022-11-15
Online:
2022-11-01
Published:
2022-11-18
Contact:
Yuesen Yue,Xifeng Fan
摘要: 狼尾草属(Pennisetum)植物是优良的牧草, 全世界约有140种。我国利用常规育种与现代生物育种方法已培育优良品种23个, 为其开发利用奠定了良好的资源基础。该文重点综述了狼尾草属牧草生物生态学、种植与栽培生理学和青贮加工等领域的研究进展, 并对今后需开展的工作, 如狼尾草属牧草高产与抗逆的生物学基础研究、遗传学机制发掘、多抗且高产狼尾草属牧草优良品种培育、繁育与栽培技术及青贮关键技术研究进行了展望, 以促进狼尾草属牧草的产业化应用。
侯新村, 滕珂, 郭强, 赵春桥, 高康, 岳跃森, 范希峰. 狼尾草属牧草研究进展. 植物学报, 2022, 57(6): 814-825.
Xincun Hou, Ke Teng, Qiang Guo, Chunqiao Zhao, Kang Gao, Yuesen Yue, Xifeng Fan. Research Advances in Forage Pennisetum Resource. Chinese Bulletin of Botany, 2022, 57(6): 814-825.
序号 | 种名 | 品种名 | 拉丁名 | 登记号/ 品种编号 | 登记时间 | 品种类别 | 选育单位 |
---|---|---|---|---|---|---|---|
1 | 美洲狼尾草 | 宁牧26-2 | P. glaucum cv. ‘Ningmu No.26-2’ | 38 | 1989 | 育成 | 江苏省农业科学院土壤肥料研究所 |
2 | 杂交狼尾草 | 杂交狼尾草 | P. glaucum × P. purpureum | 47 | 1989 | 引进 | 江苏省农业科学院土壤肥料研究所 |
3 | 象草 | 华南 | P. purpureum cv. ‘Huanan’ | 66 | 1990 | 地方 | 广西壮族自治区畜牧研究所和华南热带作物研究所 |
4 | 矮象草 | 摩特 | P. purpureum cv. ‘Mott’ | 134 | 1994 | 引进 | 广西壮族自治区畜牧研究所 |
5 | 美洲狼尾草 | 宁杂3号 | P. glaucum cv. ‘Ningza No.3’ | 195 | 1998 | 育成 | 江苏省农业科学院土壤肥料研究所 |
6 | 杂交狼尾草 | 热研4号 | P. purpureum × P. tyhoideum cv. ‘Reyan No. 4’ | 196 | 1998 | 引进 | 中国热带农业科学院热带作物品种资源研究所 |
7 | 多穗狼尾草 | 海南 | P. polystachion cv. ‘Hainan’ | 122 | 1998 | 野生栽培 | 广东省农业科学院畜牧研究所 |
8 | 杂交象草 | 桂牧1号 | (P. glaucum × P. purpureum) × P. purpureum cv. ‘Guimu No.1’ | 211 | 2000 | 育成 | 广西壮族自治区畜牧研究所 |
9 | 美洲狼尾草 | 宁杂4号 | P. glaucum cv. ‘Ningza No.4’ | 220 | 2001 | 育成 | 江苏省农业科学院草牧业研究开发中心和南京富得草业开发研究所 |
10 | 东非狼尾草 | 威提特 | P. cladestinum cv. ‘Whittet’ | 241 | 2002 | 引进 | 云南省肉牛和牧草研究中心 |
11 | 杂交狼尾草 | 邦得1号 | P. glaucum × P. purpureum cv. ‘Bangde No.1’ | 315 | 2005 | 育成 | 广西北海绿邦生物景观发展有限公司和南京富得草业开发研究所 |
12 | 象草 | 德宏 | P. purpureum cv. ‘Dehong’ | 340 | 2007 | 地方 | 云南省肉牛和牧草研究中心 |
13 | 狼尾草 | 紫光 | P. alopecuroides cv. ‘Ziguang’ | 国R-SV-PA- 005-2007 | 2007 | 育成 | 北京市农林科学院 |
14 | 象草 | 桂闽引 | P. purpureum cv. ‘Guiminyin’ | 396 | 2010 | 引进 | 广西壮族自治区畜牧研究所和福建省畜牧总站 |
15 | 象草 | 苏牧2号 | P. purpureum cv. ‘Sumu No.2’ | 397 | 2010 | 育成 | 江苏省农业科学院畜牧研究所和浙江绍兴白云建设有限公司 |
16 | 象草 | 紫色 | P. purpureum cv. ‘Purple’ | 468 | 2014 | 引进 | 广西壮族自治区畜牧研究所和福建省畜牧总站 |
17 | 狼尾草 | 长穗 | P. alopecuroides cv. ‘Changsui’ | 京S-SC-PA- 038-2015 | 2015 | 育成 | 北京市农林科学院 |
18 | 狼尾草 | 矮株 | P. alopecuroides cv. ‘Aizhu’ | 京S-SC-PA- 039-2015 | 2015 | 育成 | 北京市农林科学院 |
19 | 东方狼尾草 | 雪绒 | P. oientale cv. ‘Xuerong’ | 京S-SV-PO- 046-2016 | 2016 | 育成 | 北京市农林科学院 |
20 | 狼尾草 | 丽人 | P. alopecuroides cv. ‘Liren’ | 京S-SC-PA- 024-2017 | 2017 | 育成 | 北京市农林科学院 |
21 | 杂交狼尾草 | 闽牧6号 | P. glaucum × P. purpureum cv. ‘Minmu No.6’ | 241 | 2019 | 育成 | 福建省农业科学院农业生态研究所 |
22 | 狼尾草 | 陵山 | P. alopecuroides cv. ‘Lingshan’ | 570 | 2019 | 野生栽培 | 河北农业大学 |
23 | 狼尾草 | 丽秋 | P. alopecuroides cv. ‘Liqiu’ | 国S-BV-PA- 007-2021 | 2021 | 育成 | 北京市农林科学院 |
表1 1987-2021年我国狼尾草属审定品种
Table 1 Approved varieties of Pennisetum in China 1987-2021
序号 | 种名 | 品种名 | 拉丁名 | 登记号/ 品种编号 | 登记时间 | 品种类别 | 选育单位 |
---|---|---|---|---|---|---|---|
1 | 美洲狼尾草 | 宁牧26-2 | P. glaucum cv. ‘Ningmu No.26-2’ | 38 | 1989 | 育成 | 江苏省农业科学院土壤肥料研究所 |
2 | 杂交狼尾草 | 杂交狼尾草 | P. glaucum × P. purpureum | 47 | 1989 | 引进 | 江苏省农业科学院土壤肥料研究所 |
3 | 象草 | 华南 | P. purpureum cv. ‘Huanan’ | 66 | 1990 | 地方 | 广西壮族自治区畜牧研究所和华南热带作物研究所 |
4 | 矮象草 | 摩特 | P. purpureum cv. ‘Mott’ | 134 | 1994 | 引进 | 广西壮族自治区畜牧研究所 |
5 | 美洲狼尾草 | 宁杂3号 | P. glaucum cv. ‘Ningza No.3’ | 195 | 1998 | 育成 | 江苏省农业科学院土壤肥料研究所 |
6 | 杂交狼尾草 | 热研4号 | P. purpureum × P. tyhoideum cv. ‘Reyan No. 4’ | 196 | 1998 | 引进 | 中国热带农业科学院热带作物品种资源研究所 |
7 | 多穗狼尾草 | 海南 | P. polystachion cv. ‘Hainan’ | 122 | 1998 | 野生栽培 | 广东省农业科学院畜牧研究所 |
8 | 杂交象草 | 桂牧1号 | (P. glaucum × P. purpureum) × P. purpureum cv. ‘Guimu No.1’ | 211 | 2000 | 育成 | 广西壮族自治区畜牧研究所 |
9 | 美洲狼尾草 | 宁杂4号 | P. glaucum cv. ‘Ningza No.4’ | 220 | 2001 | 育成 | 江苏省农业科学院草牧业研究开发中心和南京富得草业开发研究所 |
10 | 东非狼尾草 | 威提特 | P. cladestinum cv. ‘Whittet’ | 241 | 2002 | 引进 | 云南省肉牛和牧草研究中心 |
11 | 杂交狼尾草 | 邦得1号 | P. glaucum × P. purpureum cv. ‘Bangde No.1’ | 315 | 2005 | 育成 | 广西北海绿邦生物景观发展有限公司和南京富得草业开发研究所 |
12 | 象草 | 德宏 | P. purpureum cv. ‘Dehong’ | 340 | 2007 | 地方 | 云南省肉牛和牧草研究中心 |
13 | 狼尾草 | 紫光 | P. alopecuroides cv. ‘Ziguang’ | 国R-SV-PA- 005-2007 | 2007 | 育成 | 北京市农林科学院 |
14 | 象草 | 桂闽引 | P. purpureum cv. ‘Guiminyin’ | 396 | 2010 | 引进 | 广西壮族自治区畜牧研究所和福建省畜牧总站 |
15 | 象草 | 苏牧2号 | P. purpureum cv. ‘Sumu No.2’ | 397 | 2010 | 育成 | 江苏省农业科学院畜牧研究所和浙江绍兴白云建设有限公司 |
16 | 象草 | 紫色 | P. purpureum cv. ‘Purple’ | 468 | 2014 | 引进 | 广西壮族自治区畜牧研究所和福建省畜牧总站 |
17 | 狼尾草 | 长穗 | P. alopecuroides cv. ‘Changsui’ | 京S-SC-PA- 038-2015 | 2015 | 育成 | 北京市农林科学院 |
18 | 狼尾草 | 矮株 | P. alopecuroides cv. ‘Aizhu’ | 京S-SC-PA- 039-2015 | 2015 | 育成 | 北京市农林科学院 |
19 | 东方狼尾草 | 雪绒 | P. oientale cv. ‘Xuerong’ | 京S-SV-PO- 046-2016 | 2016 | 育成 | 北京市农林科学院 |
20 | 狼尾草 | 丽人 | P. alopecuroides cv. ‘Liren’ | 京S-SC-PA- 024-2017 | 2017 | 育成 | 北京市农林科学院 |
21 | 杂交狼尾草 | 闽牧6号 | P. glaucum × P. purpureum cv. ‘Minmu No.6’ | 241 | 2019 | 育成 | 福建省农业科学院农业生态研究所 |
22 | 狼尾草 | 陵山 | P. alopecuroides cv. ‘Lingshan’ | 570 | 2019 | 野生栽培 | 河北农业大学 |
23 | 狼尾草 | 丽秋 | P. alopecuroides cv. ‘Liqiu’ | 国S-BV-PA- 007-2021 | 2021 | 育成 | 北京市农林科学院 |
[1] | 白淑娟, 丁成龙, 顾洪如, 周卫星 (1997). 美洲狼尾草资源的鉴定与评价. 国外农学-杂粮作物 (4), 26-29. |
[2] | 白淑娟, 张运昌, 陈德新 (1996). 杂交狼尾草亲本花期及其与杂交种产量有关的植物学性状. 江苏农业科学 (4), 61-63. |
[3] | 白淑娟, 周卫星, 钟小仙 (2002). 宁杂4号美洲狼尾草选育研究. 杂粮作物 22, 19-22. |
[4] | 陈卢亮 (2012). 我国狼尾草属牧草主栽品种特性介绍. 中国奶牛 (3), 5-8. |
[5] | 陈平, 吴秀峰, 席嘉宾, 梁红 (2004). 华南1号杂交狼尾草选育初报. 仲恺农业技术学院学报 17, 56-59. |
[6] | 陈启银, 张宝良, 邱基洪, 项云, 周永华, 吴春金, 唐青松 (2003). 不同牧草组合的青贮效果试验. 浙江畜牧兽医 28 (5), 25-26. |
[7] | 陈鑫珠, 刘远, 高承芳, 张晓佩, 李文杨, 董晓宁, 翁伯琦 (2015). 苎麻与杂交狼尾草不同混合比例的青贮效果. 福建农业学报 30, 836-840. |
[8] | 陈志彤, 黄勤楼, 潘伟彬, 黄毅斌 (2010). 狼尾草属牧草rDNA的ITS序列分析. 草业学报 19(4), 135-141. |
[9] | 陈钟佃, 黄勤楼, 黄秀声, 冯德庆, 钟珍梅 (2012). “闽牧6号”狼尾草的选育及田间种植技术. 家畜生态学报 33, 53-55. |
[10] | 丁成龙, 张建丽, 许能祥, 顾洪如 (2008). 象草种子苗的遗传变异及种间杂交研究. 江苏农业科学 (5), 194-196, 202. |
[11] | 冯德庆, 黄勤楼, 李春燕, 黄秀声, 钟珍梅 (2011). 28种牧草的脂肪酸组成分析研究. 草业学报 20(6), 214-218. |
[12] | 巩丽琼, 陈智华, 陈仕勇, 李世丹, 龙红 (2015). 多花黑麦草青贮技术研究进展. 草业与畜牧 (3), 5-8. |
[13] | 韩卡文, 石秀兰, 韦立台, 杨磊, 张群珧, 韩瑞宏, 陈平, 郭微 (2020). 杂交狼尾草新品系1号的再生特性及品质研究. 仲恺农业工程学院学报 33(4), 1-5. |
[14] | 何玮, 冉启凡 (2022). 添加纤维素酶和乳酸菌对“桂牧1号”杂交狼尾草青贮品质的影响. 中国饲料 (3), 129-132. |
[15] | 侯新村, 范希峰, 陈龙池, 朱毅, 武菊英, 赵春桥, 李钰莹 (2014). 木质纤维素草本植物边际土地可持续生产模式探究. 中国农业大学学报 19(2), 14-20. |
[16] | 侯新村, 范希峰, 武菊英, 张永侠, 左海涛 (2011). 京郊边际土地纤维素类能源草规模化种植与管理技术. 作物杂志 (4), 98-101. |
[17] | 黄勤楼, 钟珍梅, 黄秀声, 陈钟佃, 冯德庆, 夏友国 (2016). 纤维素降解菌的筛选及在狼尾草青贮中使用效果评价. 草业学报 25(4), 197-203. |
[18] | 黄水珍 (2011). 8种狼尾草属牧草农艺性状和鲜草产量分析及相关性研究. 养殖与饲料 (11), 39-41. |
[19] | 黄小云, 陈长福, 黄勤楼, 游小凤, 冯德庆, 黄秀声 (2022). 乳酸菌和纤维素酶对狼尾草和圆叶决明混合青贮品质的影响. 畜牧与兽医 54(2), 36-40. |
[20] | 黄秀声, 游小凤, 黄小云, 黄勤楼, 钟珍梅, 冯德庆 (2017). 狼尾草和花生秧混合青贮效果研究. 家畜生态学报 38(10), 58-63. |
[21] | 季崇稳 (2019). 添加柠檬酸渣对杂交狼尾草和苜蓿青贮发酵品质的影响. 硕士论文. 南京: 南京农业大学. pp. 40. |
[22] | 李玲, 赵秀芬, 赵钢 (2010). 青贮处理对饲料蛋白质组分的影响. 中国草地学报 32(6), 110-112. |
[23] | 李龙兴, 龚正发, 周佳佳, 朱欣, 陈秀华, 付浩, 王松 (2022). 薏苡秸秆与杂交狼尾草混合青贮品质的研究. 中国饲料 (5), 143-146. |
[24] | 李茂, 字学娟, 周汉林 (2012). 葡萄糖对王草青贮品质的影响. 南方农业学报 43, 1779-1782. |
[25] | 李文杨, 陈鑫珠, 刘远, 高承芳, 张晓佩, 翁伯琦 (2016a). 添加剂和混合比例对杂交狼尾草苎麻混合青贮品质的影响. 家畜生态学报 37(8), 50-54, 60. |
[26] | 李文杨, 陈鑫珠, 张晓佩, 高承芳, 刘远, 吴贤锋, 董晓宁 (2016b). 不同添加剂对杂交狼尾草青贮品质的影响. 中国草食动物科学 36, 37-40. |
[27] | 李小铃, 关皓, 闫艳红, 张新全 (2018). 狼尾草属牧草青贮优良乳酸菌的筛选及生理生化特性研究. 草学 (4), 27-35. |
[28] | 李振武, 黄秀声, 林忠宁, 陆烝, 应朝阳, 韩海东 (2017a). 狼尾草属牧草青贮技术研究进展. 现代农业科技 (13), 233-235, 238. |
[29] | 李振武, 陆烝, 黄秀声, 林忠宁, 应朝阳, 韩海东 (2017b). 狼尾草中草药型青贮添加剂的筛选及优化. 现代农业科技 (20), 221-223, 230. |
[30] | 梁英彩 (1999). 桂牧1号杂交象草选育研究. 中国草地 21, 19-22. |
[31] | 林雪婷, 高莉娜, 宋希亮, 陈为峰, 朱奕豪, 苗新, 牛旭昌 (2022). 生物炭、黄腐酸、黑曲霉对狼尾草苗期生长及光合特性的影响. 中国草地学报 44(6), 77-84. |
[32] |
刘国道, 白昌军, 王东劲, 易克贤, 韦家少, 何华玄, 周家锁 (2002). 热研4号王草选育. 草地学报 10(2), 92-96.
DOI |
[33] | 刘远, 吴贤锋, 陈鑫珠, 高承芳, 张晓佩, 李文杨 (2018). 牧草叶作为饲料原料的营养价值分析. 中国农学通报 34(17), 135-139. |
[34] | 路桂聪, 许辉, 玉永雄, 蒋曹德 (2021). 不同添加物和密度对杂交狼尾草青贮效果的影响. 草业科学 38, 2191-2199. |
[35] | 罗宗志, 林洁荣, 罗虹建, 林志魁, 陈碧成 (2016). 杂交狼尾草和桂牧1号杂交象草的核型分析. 贵州农业科学 44(9), 8-12. |
[36] | 石秀兰, 陈平, 于得水, 韩瑞宏, 刘萍 (2018). 狼尾草属优质牧草SRAP遗传多样性分析与指纹图谱构建. 广东农业科学 45(10), 55-60. |
[37] | 苏艳, 杨宝明, 黄玉玲, 李永平, 王丽花, 龙媛, 张艺萍 (2019). 杂交狼尾草腋芽的离体培养与组培快繁技术. 山西农业科学 47, 6-8, 33. |
[38] |
王丽宏, 李会彬, 孙鑫博, 边秀举 (2016). 狼尾草野生种质资源的评价与分析. 中国农业科技导报 18(3), 134-140.
DOI |
[39] | 王文强, 周汉林, 唐军 (2018). 狼尾草属牧草研究及利用进展. 热带农业科学 38(6), 49-55, 78. |
[40] | 王欣, 王玉培, 曾宪竞, 咸育龙, 王富海, 张晓明 (2009). 刈割时间对杂交狼尾草青贮质量与营养成分含量的影响. 中国奶牛 (7), 8-11. |
[41] | 王雁, 张新全, 杨富裕 (2012). 添加丙酸和乳酸菌对杂交狼尾草青贮发酵品质的影响. 草业科学 29, 1468-1472. |
[42] | 温海峰, 范希峰, 朱毅, 滕文军, 韩壮, 侯新村 (2017). 杂交狼尾草作为能源植物的研究进展. 中国农学通报 33(3), 99-104. |
[43] | 武炳超, 张欢, 童磊, 杜昭昌, 胡家菱, 陈燚, 张新全, 刘伟, 季杨, 黄琳凯 (2018). 秋水仙素和60Co-γ射线处理对杂交狼尾草种子萌发的影响. 黑龙江畜牧兽医 (24), 134-137. |
[44] | 于千桂 (2014). 杂交狼尾草的两种青贮方法. 科学种养 (1), 47. |
[45] | 张怀山 (2011). 狼尾草属牧草种质资源的开发利用. 中国草食动物 31(3), 43-44. |
[46] |
郑丹, 下条雅敬, 邵涛 (2011). 凋萎和添加绿汁发酵液对杂交狼尾草青贮发酵品质的影响. 草地学报 19, 273-276.
DOI |
[47] | 中国科学院中国植物志编辑委员会 (1990). 中国植物志, 第十卷第一分册. 北京: 科学出版社. pp. 361-362. |
[48] | 朱建峰, 崔振荣, 吴春红, 邓丞, 陈军华, 张华新 (2018). 我国盐碱地绿化研究进展与展望. 世界林业研究 (4), 70-75. |
[49] |
朱婷, 章陆杨, 许志敏, 郝亮, 陈琳, 刘燕珍, 丁国昌 (2019). 遮光及复光处理对紫叶狼尾草叶色及生理变化的影响. 草地学报 27, 263-268.
DOI |
[50] |
Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010). Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37, 1125-1135.
DOI PMID |
[51] | Divya K, Palakolanu SR, Kishor PK, Rajesh AS, Vadez V, Sharma KK, Mathur PB (2021). Functional characterization of late embryogenesis abundant genes and promoters in pearl millet (Pennisetum glaucum L.) for abiotic stress tolerance. Physiol Plant 173, 1616-1628. |
[52] | Dudhate A, Shinde H, Tsugama D, Liu SK, Takano T (2018). Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One 13, e0195908. |
[53] |
Dudhate A, Shinde H, Yu P, Tsugama D, Gupta SK, Liu SK, Takano T (2021). Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum). BMC Genomics 22, 70.
DOI PMID |
[54] | Flowers TJ, Munns R, Colmer TD (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115, 419-431. |
[55] | Garba L, Ali MSM, Oslan SN, Rahman RNZRBA (2017). Review on fatty acid desaturases and their roles in temperature acclimatisation. J Appl Sci 17, 282-295. |
[56] | Guo Q, Han JW, Li C, Hou XC, Zhao CQ, Wang QH, Wu JY, Mur LAJ (2022a). Defining key metabolic roles in osmotic adjustment and ROS homeostasis in the recretohalophyte Karelinia caspia under salt stress. Plant Physiol 174, e13663. |
[57] | Guo Q, Meng L, Han JW, Mao PC, Tian XX, Zheng ML, Mur LAJ (2020). SOS1 is a key systemic regulator of salt secretion and K+/Na+ homeostasis in the recretohalophyte Karelinia caspia. Environ Exp Bot 177, 104098. |
[58] | Guo YD, Liu LY, Yue YS, Fan XF, Teng WJ, Zhang H, Gao K, Guan J, Chang ZH, Teng K (2022b). Development of SSR markers based on transcriptome sequencing and verification of their conservation across species of ornamental Pennisetum Rich. (Poaceae). Agronomy 12, 1683. |
[59] | Hayat K, Zhou YF, Menhas S, Bundschuh J, Hayat S, Ullah A, Wang JC, Chen XF, Zhang D, Zhou P (2020). Pennisetum giganteum: an emerging salt accumulating/ tolerant non-conventional crop for sustainable saline agriculture and simultaneous phytoremediation. Environ Pollut 265, 114876. |
[60] |
Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, Kheni J, Angadi UB, Iquebal MA, Golakia BA, Rai A, Kumar D (2018). Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum L.) and development of web-genomic resources. Sci Rep 8, 3382.
DOI PMID |
[61] |
Jiang DG, Zhou LY, Chen WT, Ye NH, Xia JX, Zhuang CX (2019). Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in rice via ABA-mediated pathways. Rice 12, 76.
DOI PMID |
[62] | Khushdil F, Jan FG, Jan G, Hamayun M, Iqbal A, Hussain A, Bibi N (2019). Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus. Plant Physiol Biochem 144, 127-134. |
[63] | Kishor PBK, Suravajhala R, Rajasheker G, Marka N, Shridhar KK, Dhulala D, Scinthia KP, Divya K, Doma M, Edupuganti S, Suravajhala P, Polavarapu R (2020). Lysine, lysine-rich, serine, and serine-rich proteins: link between metabolism, development, and abiotic stress tolerance and the role of ncRNAs in their regulation. Front Plant Sci 11, 546213. |
[64] |
Li HC, Lu HB, Yang FY, Liu SJ, Bai CJ, Zhang YW (2015). Cloning and sequence analysis of sucrose phosphate synthase gene from varieties of Pennisetum species. Genet Mol Res 14, 2799-2808.
DOI PMID |
[65] | Li QY, Lei S, Du KB, Li LZ, Pang XF, Wang ZC, Wei M, Fu S, Hu LM, Xu L (2016). RNA-seq based transcriptomic analysis uncovers α-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci Rep 6, 36463. |
[66] | Li QY, Xiang CL, Xu L, Cui JH, Fu S, Chen BL, Yang SK, Wang P, Xie YF, Wei M, Wang ZC (2020). SMRT sequencing of a full-length transcriptome reveals transcript variants involved in C18 unsaturated fatty acid biosynthesis and metabolism pathways at chilling temperature in Pennisetum giganteum. BMC Genomics 21, 52. |
[67] | Liu LY, Teng K, Fan XF, Han C, Zhang H, Wu JY, Chang ZH (2022). Combination analysis of single-molecule long-read and Illumina sequencing provides insights into the anthocyanin accumulation mechanism in an ornamental grass, Pennisetum setaceum cv. ‘Rubrum’. Plant Mol Biol 109, 159-175. |
[68] | Maksup S, Sengsai S, Laosuntisuk K, Asayot J, Pongprayoon W (2020). Physiological responses and the expression of cellulose and lignin associated genes in Napier grass hybrids exposed to salt stress. Acta Physiol Plant 42, 109. |
[69] |
Miura K, Furumoto T (2013). Cold signaling and cold response in plants. Int J Mol Sci 14, 5312-5337.
DOI PMID |
[70] |
Muktar MS, Teshome A, Hanson J, Negawo AT, Habte E, Entfellner JBD, Lee KW, Jones CS (2019). Genotyping by sequencing provides new insights into the diversity of Napier grass (Cenchrus purpureus) and reveals variation in genome-wide LD patterns between collections. Sci Rep 9, 6936.
DOI PMID |
[71] | Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992). Genetically engineered alteration in the chilling sensitivity of plants. Nature 356, 710-713. |
[72] | Muscolo A, Panuccio MR, Eshel A (2013). Ecophysiology of Pennisetum clandestinum: a valuable salt tolerant grass. Environ Exp Bot 92, 55-63. |
[73] | Rocha JRDASDC, Machado JC, Carneiro PCS, Carneiro JDC, Resende MDV, Pereira AV, Carneiro JEDS (2017). Elephant grass ecotypes for bioenergy production via direct combustion of biomass. Ind Crop Prod 95, 27-32. |
[74] | Rocha JRDASDC, Marçal TDS, Salvador FV, da Silva AC, Machado JC, Carneiro PCS (2018). Genetic insights into elephant grass persistence for bioenergy purpose. PLoS One 13, e0203818. |
[75] |
Routaboul JM, Fischer SF, Browse J (2000). Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol 124, 1697-1705.
DOI PMID |
[76] | Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, Gupta SK, Liu SK, Takano T (2018). Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot 155, 619-627. |
[77] |
Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6, 410-417.
DOI PMID |
[78] |
Shivhare R, Asif MH, Lata C (2020). Comparative transcriptome analysis reveals the genes and pathways involved in terminal drought tolerance in pearl millet. Plant Mol Biol 103, 639-652.
DOI PMID |
[79] |
Shivhare R, Lata C (2016). Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci Rep 6, 23036.
DOI PMID |
[80] | Shivhare R, Lata C (2017). Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7, 2069. |
[81] | Sivakumar MVK, Das HP, Brunini O (2005). Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. Clim Change 70, 31-72. |
[82] |
Upchurch RG (2008). Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30, 967-977.
DOI PMID |
[83] |
Varshney RK, Shi CC, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao YS, Wang XY, Rathore A, Srivastava RK, Chitikineni A, Fan GY, Bajaj P, Punnuri S, Gupta SK, Wang H, Jiang Y, Couderc M, Katta MAVSK, Paudel DR, Mungra KD, Chen WB, Harris-Shultz KR, Garg V, Desai N, Doddamani D, Kane NA, Conner JA, Ghatak A, Chaturvedi P, Subramaniam S, Yadav OP, Berthouly-Salazar C, Hamidou F, Wang JP, Liang XM, Clotault J, Upadhyaya HD, Cubry P, Rhoné B, Gueye MC, Sunkar R, Dupuy C, Sparvoli F, Cheng SF, Mahala RS, Singh B, Yadav RS, Lyons E, Datta SK, Hash CT, Devos KM, Buckler E, Bennetzen JL, Paterson AH, Ozias-Akins P, Grando S, Wang J, Mohapatra T, Weckwerth W, Reif JC, Liu X, Vigouroux Y, Xu X (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35, 969-976.
DOI PMID |
[84] | Wang CR, Yan HD, Li J, Zhou SF, Liu T, Zhang XQ, Huang LK (2018). Genome survey sequencing of purple elephant grass (Pennisetum purpureum Schum cv. ‘Zise’) and identification of its SSR markers. Mol Breed 38, 94. |
[85] | Xu G, Zheng F, Ma R, Zheng FQ, Zheng L, Ding XF, Xie CP (2018). First report of Curvularia lunata causing leaf spot of Pennisetum hydridum in China. Plant Dis 102, 2372. |
[86] | Xu J, Liu C, Song Y, Li MF (2021). Comparative analysis of the chloroplast genome for four Pennisetum species: molecular structure and phylogenetic relationships. Front Genet 12, 687844. |
[87] | Yadav CB, Tokas J, Yadav D, Winters A, Singh RB, Yadav R, Gangashetty PI, Srivastava RK, Yadav RS (2021). Identifying anti-oxidant biosynthesis genes in pearl millet [Pennisetum glaucum (L.) R. Br.] using genome- wide association analysis. Front Plant Sci 12, 599649. |
[88] | Yan Q, Li J, Lu LY, Gao LJ, Lai DW, Yao N, Yi XF, Wu ZY, Lai ZQ, Zhang JY (2021a). Integrated analyses of phenotype, phytohormone, and transcriptome to elucidate the mechanism governing internode elongation in two contrasting elephant grass (Cenchrus purpureus) cultivars. Ind Crop Prod 170, 113693. |
[89] | Yan Q, Wu F, Xu P, Sun ZY, Li J, Gao LJ, Li LY, Chen DD, Muktar M, Jones C, Yi XF, Zhang JY (2021b). The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth. Mol Ecol Resour 21, 526-542. |
[90] | Zhang SK, Xia ZQ, Li C, Wang XH, Lu XQ, Zhang WQ, Ma HZ, Zhou XC, Zhang WX, Zhu TT, Liu PD, Liu GD, Yang HB, Xia T (2022). Chromosome-scale genome assembly provides insights into speciation of allotetraploid and massive biomass accumulation of elephant grass (Pennisetum purpureum Schum.). Mol Ecol Resour 22, 2363-2378. |
[91] | Zhang Y, Yuan XH, Teng WJ, Chen C, Liu H, Wu JY (2015). Karyotype diversity analysis and nuclear genome size estimation for Pennisetum Rich. (Poaceae) ornamental grasses reveal genetic relationship and chromosomal evolution. Sci Hortic 193, 22-31. |
[92] | Zhang Y, Yuan XH, Teng WJ, Chen C, Wu JY (2016). Identification and phylogenetic classification of Pennisetum (Poaceae) ornamental grasses based on SSR locus polymorphisms. Plant Mol Biol Rep 34, 1181-1192. |
[93] | Zhou SF, Wang CR, Yin GH, Zhang Y, Shen XY, Pennerman KK, Zhang JB, Yan HD, Zhang CL, Zhang XQ, Ren SP, Guo TF, Peng Y, Ma X, Liu W, Yan YH, Huang LK (2019). Phylogenetics and diversity analysis of Pennisetum species using Hemarthria EST-SSR markers. Grass Forage Sci 65, 13-22. |
[94] | Zhu T, Wang X, Xu ZM, Xu J, Li R, Liu N, Ding GC, Sui SZ (2020). Screening of key genes responsible for Pennisetum setaceum ‘Rubrum’ leaf color using transcriptome sequencing. PLoS One 15, e0242618. |
[1] | 刘寅笃, 脱军康, 李成举, 张锋, 张春利, 张莹, 王云姣, 范又方, 姚攀锋, 孙超, 刘玉汇, 刘震, 毕真真, 白江平. 耐低钾马铃薯品种的筛选与评价[J]. 植物学报, 2024, 59(1): 75-88. |
[2] | 谭文清, 陈军, 才宏伟. 黑麦草生物学研究进展[J]. 植物学报, 2022, 57(6): 802-813. |
[3] | 郝怀庆, 张汝, 卢呈, 罗洪, 李志刚, 尚丽, 王宁, 刘智全, 吴小园, 景海春. 甜高粱育种研究进展及未来展望[J]. 植物学报, 2022, 57(6): 774-784. |
[4] | 洪军, 苏红田. 我国牧草种质资源保护工作进展与发展思路[J]. 植物学报, 2022, 57(6): 725-731. |
[5] | 王娜, 姜腾, 王彬锡, 牛丽芳, 林浩. 单倍体育种技术研究进展及其在苜蓿等豆科牧草中的应用[J]. 植物学报, 2022, 57(6): 756-763. |
[6] | 陶克涛, 白东义, 图格琴, 赵若阳, 安塔娜, 铁木齐尔·阿尔腾齐米克, 宝音德力格尔, 哈斯, 芒来, 韩海格. 基于基因组SNPs对东亚家马不同群体遗传多样性的评估[J]. 生物多样性, 2022, 30(5): 21031-. |
[7] | 朱林, 王甜甜, 赵学琳, 祁亚淑, 许兴. 紫花苜蓿和斜茎黄耆水力提升作用及其对伴生植物的效应[J]. 植物生态学报, 2020, 44(7): 752-762. |
[8] | 杨云卉, 白可喻, Devra Jarvis, 龙春林. 西双版纳黄瓜农家品种及其传统知识[J]. 生物多样性, 2019, 27(7): 743-748. |
[9] | 陶乃奇,张斌,刘信凯,周和达,钟乃盛,严丹峰,张敏,高继银,张文驹. 利用荧光标记SSR鉴别21个茶花新品种[J]. 植物学报, 2019, 54(1): 37-45. |
[10] | 雷启义, 周江菊, 罗静, 张文华, 孙军, 龙春林. 贵州侗族地区香禾糯品种多样性的变化[J]. 生物多样性, 2017, 25(9): 990-998. |
[11] | 贾晓旭, 唐修君, 樊艳凤, 陆俊贤, 黄胜海, 葛庆联, 高玉时, 韩威. 华东地区地方鸡品种mtDNA控制区遗传多样性[J]. 生物多样性, 2017, 25(5): 540-548. |
[12] | 王家宜, 余涵霞, 赖玉芳, 万方浩, 钱万强, 彭长连, 李伟华. 入侵杂草薇甘菊与本地植物粉葛对水分胁迫的生理响应[J]. 生物多样性, 2017, 25(12): 1267-1275. |
[13] | 杨顺, 孙微, 刘杏忠, 向梅春. 石生真菌研究现状与展望[J]. 生物多样性, 2016, 24(9): 1068-1076. |
[14] | 刘晓东, 王若仲, 焦彬彬, 代培红, 李月. 拟南芥IAA酰胺合成酶GH3-6负调控干旱和盐胁迫的反应[J]. 植物学报, 2016, 51(5): 586-593. |
[15] | 祝志欣, 鲁迎青. 花青素代谢途径与植物颜色变异[J]. 植物学报, 2016, 51(1): 107-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||