植物学报 ›› 2016, Vol. 51 ›› Issue (1): 58-67.DOI: 10.11983/CBB14211
出版日期:
2016-01-01
发布日期:
2016-02-01
通讯作者:
李止正
作者简介:
? 共同第一作者
Jia Li, Jinxing Chen, Zhizheng Li*
Online:
2016-01-01
Published:
2016-02-01
Contact:
Li Zhizheng
About author:
? These authors contributed equally to this paper
摘要:
水稻(Oryza sativa)根系照光实验表明, 光的效应随循环水影响到不照光的植株, 暗示营养液中发生了化学变化。在Si (K2SiO3)和Fe (FeEDTA)组成的溶液模拟系统中, 分别照射LED-紫光或阳光, 观察到反应液的OD400值随光照时间的延长而增加。光照引起的化学变化发生在FeEDTA和K2SiO3之间。化学变化只与光能量有关, 与溶液温度无关, 这是一种光化学反应。光化反应溶液的光吸收从OD360到OD560都有明显增高。LED-蓝光和阳光诱导产生的并含FeEDTA-SiO3成分并能吸收光的二元螯合铁硅酸盐复合物附着在衬底膜上, 形成三元复合物。衬底膜上可见大量的颗粒, 其中有些是反光的微晶颗粒。除LED-蓝光和阳光外, LED-紫光、LED-红光和LED-红外光也能诱导产生光谱性质相同的螯合铁硅酸盐复合物。制备含螯合铁硅酸盐复合分子的溶液并进行植物生长实验, 结果显示小球藻生长好, 死亡的藻体分解褪色后留下的是褐色的蓬松团状铁-硅化物。经螯合铁硅酸盐复合物处理的水稻干重增加明显。
李佳, 陈金星, 李止正. 营养液照光引起的化学变化及其对植物生长的影响. 植物学报, 2016, 51(1): 58-67.
Jia Li, Jinxing Chen, Zhizheng Li. Chemical Changes Caused by LED Lamps in Nutrient Solution and Its Effect on Plant Growth. Chinese Bulletin of Botany, 2016, 51(1): 58-67.
图1 6种LED光源系统 6种LED光源分别为LED-红光、LED-绿光、LED-黄光、LED-紫光、LED-蓝光和LED-白光
Figure 1 6 different LED devices for root system illumination experiments6 kinds of LED: LED-red, LED-green, LED-yellow, LED- purple, LED-blue, and LED-white
图3 不同LED光源对植株缺铁症状发生与恢复的影响(A) 铁浓度为1 mg∙L-1时LED-蓝光实验组植株具缺铁症状; (B)-(G) 加铁至6 mg∙L-1后植株缺铁症状的恢复情况; 实验组依次为LED-蓝光、LED-白光、LED-紫光、LED-绿光、LED-黄光和LED-红光; 各组装置由左至右分别为CK3土培、CK2、单独水培和CK1/LED并联水培。(A)-(D) LED光板在右边栽培盆钵内; (E)-(G) LED光板在左边栽培盆钵内。
Figure 3 The Fe deficiency symptom and its recovery of rice plants in series experiments of LED illumination to root system in the solution (A) Fe deficiency symptom of rice plants in solution with 1 mg∙L-1 Fe; (B)-(G) The recovery of Fe deficiency symptom of rice plants in solution with 6 mg∙L-1 Fe; The experimental groups were LED-blue, LED-white, LED-purple, LED-green, LED-yellow and LED-red, respectively; Sets in each group, from left to right, was CK3 soil culture, CK2, independent hydroponics, and CK1/LED illuminated in connected hydroponics. (A)-(D) The LED board was in the right pot; (E)-(G) The LED board was in the left pot.
Reaction system (RS) | Ingredients | Compound and source |
---|---|---|
RS1 | 100 mg∙L-1 Fe+100 mg∙L-1 Si | FeEDTA (self-made), K2SiO3·xH2O (goods) |
RS2 | 100 mg∙L-1 Fe+100 mg∙L-1 Si | FeEDTA (Librel BMX), K2SiO3·xH2O (goods) |
表1 模拟反应系统成分
Table 1 Composition of imitated solution reaction system
Reaction system (RS) | Ingredients | Compound and source |
---|---|---|
RS1 | 100 mg∙L-1 Fe+100 mg∙L-1 Si | FeEDTA (self-made), K2SiO3·xH2O (goods) |
RS2 | 100 mg∙L-1 Fe+100 mg∙L-1 Si | FeEDTA (Librel BMX), K2SiO3·xH2O (goods) |
Treatment time (d) | Sunlight RS1 in dark (CK) | Sunlight RS1 | |||
---|---|---|---|---|---|
OD400 | Water (°C) | OD400 | Water (°C) | ||
0 | 0.10 | - | 0.10 | - | |
1 | 0.10 | 38 | 0.12 | 35 | |
2 | 0.10 | 27 | 0.13 | 26 | |
3 | 0.10 | 26 | 0.14 | 25 | |
4 | 0.10 | 24 | 0.15 | 24 | |
5 | 0.10 | 24 | 0.16 | 24 | |
6 | 0.10 | 30 | 0.17 | 30 | |
7 | 0.10 | 27 | 0.18 | 27 | |
8 | 0.11 | 33 | 0.19 | 32 | |
9 | 0.11 | 33 | 0.20 | 32 | |
10 | 0.11 | 32 | 0.23 | 31 |
表2 光和水温对RS1系统的影响
Table 2 Effects of sunlight and water temperature on the system RS1
Treatment time (d) | Sunlight RS1 in dark (CK) | Sunlight RS1 | |||
---|---|---|---|---|---|
OD400 | Water (°C) | OD400 | Water (°C) | ||
0 | 0.10 | - | 0.10 | - | |
1 | 0.10 | 38 | 0.12 | 35 | |
2 | 0.10 | 27 | 0.13 | 26 | |
3 | 0.10 | 26 | 0.14 | 25 | |
4 | 0.10 | 24 | 0.15 | 24 | |
5 | 0.10 | 24 | 0.16 | 24 | |
6 | 0.10 | 30 | 0.17 | 30 | |
7 | 0.10 | 27 | 0.18 | 27 | |
8 | 0.11 | 33 | 0.19 | 32 | |
9 | 0.11 | 33 | 0.20 | 32 | |
10 | 0.11 | 32 | 0.23 | 31 |
图5 RS2系统在日光下28天后的光谱(A)及光化反应分析(B)
Figure 5 The spectrums of RS2 solution under sunshine for 28 d (A) and analysis of photo-chemical reaction (B) induced by SiO3 in RS2 system
图7 光化产物成分分析(A) 黑暗下RS1系统中峰1+峰2和峰6的分离; (B) 阳光下RS1系统中产生螯合铁硅酸盐复合体; (C) LED-蓝光照射RS1系统中产生螯合铁硅酸盐复合体
Figure 7 Analysis of contents of photo-chemical outcomes(A) Separate peak 1+2 and peak 6 from the RS1 system in the dark; (B) The complex composed from RS1 system under the sunlight; (C) The complex composed from RS1 system under the LED-blue
图8 螯合铁硅酸盐复合体的形态特征及其化学成分(A) 电子显微镜下起泡的螯合铁硅酸盐复合体有机膜状态(Bar=50 nm); (B) 螯合铁硅酸盐复合体的多层膜叠加复合体(膜表面散布无数颗粒) (Bar=100 nm); (C) 螯合铁硅酸盐复合体膜中的化学元素; (D) 螯合铁硅酸盐复合体膜上的微晶颗粒
Figure 8 Morphological characteristics and chemical constituents of FeEDTA-SiO3 complex(A) The organic membrane with bubbles of the complex of FeEDTA-SiO3 under the electron microscope (Bar=50 nm); (B) The membrane overlap of FeEDTA-SiO3 complex (attention to a lot of pearls on the membrane) (Bar=100 nm); (C) The chemical elements involved in the organic membrane of FeEDTA-SiO3 complex under the electron microscope; (D) The microcrystal pearls on the membrane of FeEDTA-SiO3 complex
图9 螯合铁硅酸盐复合体初提物对小球藻生长的影响 (A) 样品从左至右依次为0.5 mg∙L-1 90%乙醇提取物、0.5 mg∙L-1纯乙醇提取物、对照、0.2 mg∙L-1透析袋内样品和0.4 mg∙L-1透析袋外样品; (B) 样品在40°C以上的暗箱中培养40天(样品顺序同图9A)
Figure 9 Effect of primary extracts of FeEDTA-SiO3 com- plex on the growth of Chlorella beijerinch(A) From left to right in proper order: 0.5 mg∙L-1 extract with 90% alcohol, 0.5 mg∙L-1 extract with pure alcohol, CK, 0.2 mg∙L-1 extract in the dialysis bag, and 0.4 mg∙L-1 extract out of the dialysis bag; (B) The samples were in the dark box of 40°C for 40 d (from left to right in proper order were same as in Figure 9A)
Source and dosage of extracts | Tiller number | Root/shoot | Dry weight (g) |
---|---|---|---|
(1) CK | 3.0 | 0.09±0.02 | 0.67±0.12 |
(2) Pure alcohol extracts, out of the dialysis bag, OD400=0.025 | 4.2 | 0.15±0.01 | 1.25±0.02 |
(3) Ditto, OD400=0.075 | 4.3 | 0.17±0.03 | 1.49±0.32 |
(4) Ditto, OD400=0.22 | 2.3 | 0.08±0.01 | 0.63±0.10 |
(5) 95% alcohol extracts, out of the dialysis bag, OD400=0.042 | 3.8 | 0.15±0.03 | 1.29±0.21 |
(6) Ditto, OD400=0.176 | 3.6 | 0.16±0.02 | 1.42±0.08 |
表3 螯合铁硅酸盐复合体对水稻生长的影响
Table 3 Effect of the FeEDTA-SiO3 on rice growth
Source and dosage of extracts | Tiller number | Root/shoot | Dry weight (g) |
---|---|---|---|
(1) CK | 3.0 | 0.09±0.02 | 0.67±0.12 |
(2) Pure alcohol extracts, out of the dialysis bag, OD400=0.025 | 4.2 | 0.15±0.01 | 1.25±0.02 |
(3) Ditto, OD400=0.075 | 4.3 | 0.17±0.03 | 1.49±0.32 |
(4) Ditto, OD400=0.22 | 2.3 | 0.08±0.01 | 0.63±0.10 |
(5) 95% alcohol extracts, out of the dialysis bag, OD400=0.042 | 3.8 | 0.15±0.03 | 1.29±0.21 |
(6) Ditto, OD400=0.176 | 3.6 | 0.16±0.02 | 1.42±0.08 |
1 | 龚颂福, 李止正 (1995). 立柱无土栽培研究初报. 应用与环境生物学报 2, 187-188. |
2 | 龚颂福, 李止正 (2002a). 花卉柱式无土栽培(CSC). 植物学通报 19, 477-483. |
3 | 龚颂福, 李止正 (2002b). 简易柱式无土栽培法. 应用与环境生物学报 8, 666-667. |
4 | 龚颂福, 李止正 (2003). 屋顶柱式无土栽培. 植物生理学通讯 39, 644-647. |
5 | 李止正, 陈金星 (2005). 水稻铁营养不足症状的发生及发光二极管增进铁营养方法. 中国, ZL200510024101.3. 2009- 07-29. |
6 | 李止正, 龚颂福 (2002a). 立柱和柱式无土栽培系统(SCSC)及其在生菜栽培上的应用. 应用与环境生物学报 8, 142-147. |
7 | 李止正, 龚颂福 (2002b). 番茄柱式无土栽培(CSC)研究. 应用与环境生物学报 8, 492-496. |
8 | 邹邦基 (1980). 植物生活中的硅. 植物生理学通讯 3, 14-20. |
[1] | 欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6): 746-758. |
[2] | 王劲东,周豫,余佳雯,范晓磊,张昌泉,李钱峰,刘巧泉. miR172-AP2模块调控植物生长发育及逆境响应的研究进展[J]. 植物学报, 2020, 55(2): 205-215. |
[3] | 王梦龙,彭小群,陈竹锋,唐晓艳. 植物凝集素类受体蛋白激酶研究进展[J]. 植物学报, 2020, 55(1): 96-105. |
[4] | 郭倩倩,周文彬. 植物响应联合胁迫机制的研究进展[J]. 植物学报, 2019, 54(5): 662-673. |
[5] | 张旭红, 王頔, 梁振旭, 孙美玉, 张金政, 石雷. 欧洲百合愈伤组织诱导及植株再生体系的建立[J]. 植物学报, 2018, 53(6): 840-847. |
[6] | 韩丹璐, 赖建彬, 阳成伟. SUMO E3连接酶在植物生长发育中的功能研究进展[J]. 植物学报, 2018, 53(2): 175-184. |
[7] | 任桂萍, 王小菁, 朱根发. 不同光质的LED对蝴蝶兰组织培养增殖及生根的影响[J]. 植物学报, 2016, 51(1): 81-88. |
[8] | 任鸿雁, 王莉, 马青秀, 吴光. 油菜素内酯生物合成途径的研究进展[J]. 植物学报, 2015, 50(6): 768-778. |
[9] | 张桂芝, 林继山, 李燕洁, 侯丙凯. 植物激素糖基化修饰研究进展[J]. 植物学报, 2014, 49(5): 515-523. |
[10] | 冯欢, 易姝利, 谢佳恒, 雷梦琦, 黄萱. 微型月季愈伤组织诱导及植株再生[J]. 植物学报, 2014, 49(5): 595-602. |
[11] | 杨鹏, 胥晓. 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响[J]. 植物生态学报, 2012, 36(1): 81-87. |
[12] | 石福孙, 吴宁, 吴彦. 川西北高寒草地3种主要植物的生长及物质分配对温度升高的响应[J]. 植物生态学报, 2010, 34(5): 488-497. |
[13] | 黎颖;左开井;唐克轩. 植物GH3 基因家族的功能研究概况[J]. 植物学报, 2008, 25(05): 507-515. |
[14] | 宋丽 李李 储昭庆 薛红卫. 拟南芥油菜素内酯信号转导研究进展[J]. 植物学报, 2006, 23(5): 556-563. |
[15] | 储昭庆 李李 宋丽 薛红卫. 油菜素内酯生物合成与功能的研究进展[J]. 植物学报, 2006, 23(5): 543-555. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||